[1] CLOUET J, FUSELLIER M, CAMUS A, et al. Intervertebral disc regeneration:From cell therapy to the development of novel bioinspired endogenous repair strategies[J]. Adv Drug Deliv Rev, 2019, 146:306-324. [2] ANDERSON D G, YOON T, SHEN F, et al. Summary statement:biologic repair or regeneration of the intervertebral disc[J]. Spine J, 2005, 5(6):S304. [3] LEE J H, CHOI K H, KANG S, et al. Nonsurgical treatments for patients with radicular pain from lumbosacral disc herniation[J]. Spine J, 2019, 19(9):1478-1489. [4] CHEN S, ZHAO L, DENG X Y, et al. Mesenchymal stem cells protect nucleus pulposus cells from compression-induced apoptosis by inhibiting the mitochondrial pathway[J]. Stem Cells Int, 2017, 2017:1-10. [5] KIM S Y, BAEK K H. TGF-β signaling pathway mediated by deubiquitinating enzymes[J]. Cell Mol Life Sci, 2019, 76(4):653-665. [6] van der Kraan P M. The changing role of TGFbeta in healthy, ageing and osteoarthritic joints[J]. Nat Rev Rheumatol, 2017,13(3):155-163. [7] BUDI E H, DUAN D N, DERYNCK R. Transforming growth factor-β receptors and smads:regulatory complexity and functional versatility[J]. Trends Cell Biol, 2017, 27(9):658-672. [8] XU F Y, LIU C W, ZHOU D D, et al. TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J]. J Histochem Cytochem, 2016, 64(3):157-167. [9] RAHMAN M S, AKHTAR N, JAMIL H M, et al. TGF-β/BMP signaling and other molecular events:regulation of osteoblastogenesis and bone formation[J]. Bone Res, 2015, 3:15005. [10] WILLIAMS S, ALKHATIB B, SERRA R. Development of the axial skeleton and intervertebral disc[J].Curr Top Dev Biol, 2019, 133:49-90. [11] LAWSON L Y, HARFE B D. Developmental mechanisms of intervertebral disc and vertebral column formation[J]. Wiley Interdiscip Rev:Dev Biol, 2017,6(6):e283. [12] BAFFI M O, MORAN M A, SERRA R. Tgfbr2 regulates the maintenance of boundaries in the axial skeleton[J]. Dev Biol, 2006, 296(2):363-374. [13] PECK S H, MCKEE K K, TOBIAS J W, et al. Whole transcriptome analysis of notochord-derived cells during embryonic formation of the nucleus pulposus[J]. Sci Rep, 2017,7(1):10504. [14] JIN H T, SHEN J, WANG B L, et al. TGF-β signaling plays an essential role in the growth and maintenance of intervertebral disc tissue[J]. FEBS Lett, 2011, 585(8):1209-1215. [15] NAGANO S, MATSUNAGA S, TAKAE R, et al. Immunolocalization of transforming growth factor-betas and their receptors in the intervertebral disk of senescence-accelerated mouse[J]. Int J Oncol, 2000, 17(3):461-466. [16] ZHENG L W, CAO Y, NI S F, et al. Ciliary parathyroid hormone signaling activates transforming growth factor-β to maintain intervertebral disc homeostasis during aging[J]. Bone Res, 6(1):1. [17] MURAKAMI H, YOON S T, ATTALLAH-WASIF E S, et al. The expression of anabolic cytokines in intervertebral discs in age-related degeneration[J]. Spine, 2006, 31(16):1770-1774. [18] DAHIA C L, MAHONEY E J, DURRANI A A, et al. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging[J]. Spine, 2009, 34(5):456-462. [19] NERLICH A G, BACHMEIER B E, BOOS N. Expression of fibronectin and TGF-β1 mRNA and protein suggest altered regulation of extracellular matrix in degenerated disc tissue[J]. Eur Spine J, 2005, 14(1):17-26. [20] TOLONEN J, GRÖNBLAD M, VIRRI J, et al. Transforming growth factor β receptor induction in herniated intervertebral disc tissue:an immunohistochemical study[J]. Eur Spine J, 2001, 10(2):172-176. [21] SCHROEDER M, VIEZENS L, SCHAEFER C, et al. Chemokine profile of disc degeneration with acute or chronic pain[J]. J Neurosurg Spine, 2013, 18(5):496-503. [22] ABBOTT R D, PURMESSUR D, MONSEY R D, et al. Degenerative grade affects the responses of human nucleus pulposus cells to link-N, CTGF, and TGFβ3[J]. J Spinal Disord Tech, 2013, 26(3):E86-E94. [23] TSAROUHAS A, SOUFLA G, TSAROUHAS K, et al. Molecular profile of major growth factors in lumbar intervertebral disc herniation:Correlation with patient clinical and epidemiological characteristics[J]. Mol Med Rep, 2017, 15(4):2195-2203. [24] MIZUNO S, KASHIWA K, KANG J D. Molecular and histological characteristics of bovine caudal nucleus pulposus by combined changes in hydrostatic and osmotic pressures in vitro[J]. J Orthop Res, 2019, 37(2):466-476. [25] RISBUD M V, SHAPIRO I M. Role of cytokines in intervertebral disc degeneration:pain and disc content[J]. Nat Rev Rheumatol, 2014,10(1):44-56. [26] YANG H, GAO F, LI X, et al. TGF-β1 antagonizes TNF-αinduced up-regulation of matrix metalloproteinase 3 in nucleus pulposus cells:role of the ERK1/2 pathway[J]. Connect Tissue Res, 2015, 56(6):461-468. [27] OHRT-NISSEN S, DØSSING K B V, ROSSING M, et al. Characterization of miRNA expression in human degenerative lumbar disks[J]. Connect Tissue Res, 2013, 54(3):197-203. [28] HONDKE S, CABRAJA M, KRÜGER J P, et al. Proliferation, migration, and ECM formation potential of human annulus fibrosus cells is independent of degeneration status[J]. Cartilage, 2020, 11(2):192-202. [29] GILBERT H T J, HOYLAND J A, RICHARDSON S M. Stem cell regeneration of degenerated intervertebral discs:current status (update)[J]. Curr Pain Headache Rep, 2013, 17(12):377. [30] HU B, XU C, CAO P, et al. TGF-β stimulates expression of chondroitin polymerizing factor in nucleus pulposus cells through the Smad3, RhoA/ROCK1, and MAPK signaling pathways[J]. J Cell Biochem, 2018, 119(1):566-579. [31] TRAN C M, SHAPIRO I M, RISBUD M V. Molecular regulation of CCN2 in the intervertebral disc:Lessons learned from other connective tissues[J]. Matrix Biol, 2013, 32(6):298-306. [32] TRAN C M, MARKOVA D, SMITH H E, et al. Regulation of CCN2/Connective tissue growth factor expression in the nucleus pulposus of the intervertebral disc:Role of Smad and activator protein 1 signaling[J]. Arthritis Rheum, 2010, 62(7):1983-1992. [33] PELLE D W, PEACOCK J D, SCHMIDT C L, et al. Genetic and functional studies of the intervertebral disc:a novel murine intervertebral disc model[J]. PLoS One, 2014, 9(12):e112454. [34] YUE B, LIN Y Z, MA X X, et al. Survivin-TGFB3-TIMP1 gene therapy via lentivirus vector slows the course of intervertebral disc degeneration in an in vivo rabbit model[J]. Spine, 2016, 41(11):926-934. [35] WANG F, SHI R, CAI F, et al. Stem cell approaches to intervertebral disc regeneration:obstacles from the disc microenvironment[J]. Stem Cells Dev, 2015, 24(21):2479-2495. [36] CHOU P H, WANG S T, MA H L, et al. Development of a two-step protocol for culture expansion of human annulus fibrosus cells with TGF-beta1 and FGF-2[J]. Stem Cell Res Ther, 2016,7(1):89. [37] NAKAI T, SAKAI D, NAKAMURA Y, et al. CD146 defines commitment of cultured annulus fibrosus cells to express a contractile phenotype[J]. J Orthop Res, 2016, 34(8):1361-1372. [38] NAKAI T, MOCHIDA J, SAKAI D. Synergistic role of c-Myc and ERK1/2 in the mitogenic response to TGF beta-1 in cultured rat nucleus pulposus cells[J]. Arthritis Res Ther, 2008,10(6):R140. [39] HIYAMA A, SAKAI D, TANAKA M, et al. The relationship between the Wnt/β-catenin and TGF-β/BMP signals in the intervertebral disc cell[J]. J Cell Physiol, 2011, 226(5):1139-1148. [40] ILLIEN-JÜNGER S, LU Y, PURMESSUR D, et al. Detrimental effects of discectomy on intervertebral disc biology can be decelerated by growth factor treatment during surgery:a large animal organ culture model[J]. Spine J, 2014, 14(11):2724-2732. [41] ZHANG F, ZHAO X L, SHEN H X, et al. Molecular mechanisms of cell death in intervertebral disc degeneration (Review)[J]. Int J Mol Med, 2016, 37(6):1439-1448. [42] ZHAO L, LIN H, CHEN S F, et al. Hydrogen peroxide induces programmed necrosis in rat nucleus pulposus cells through the RIP1/RIP3-PARP-AIF pathway[J]. J Orthop Res, 2018, 36(4):1269-1282. [43] ZHENG G, PAN Z Y, ZHAN Y, et al. TFEB protects nucleus pulposus cells against apoptosis and senescence via restoring autophagic flux[J]. Osteoarthr Cartil, 2019, 27(2):347-357. [44] LYU G L, GUAN Y T, ZHANG C, et al. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging[J]. Nat Commun, 2018, 9(1):2560. [45] CUNHA C, SILVA AJ, PEREIRA P, et al. The inflammatory response in the regression of lumbar disc herniation[J]. Arthritis Res Ther, 2018,20(1):251. [46] CHO H, LEE S, PARK S H,et al. Synergistic effect of combined growth factors in porcine intervertebral disc degeneration[J]. Connect Tissue Res, 2013,54(3):181-186. [47] OHBA T, HARO H, ANDO T, et al. A potential role of thymic stromal lymphopoietin in the recruitment of macrophages to mouse intervertebral disc cells via monocyte chemotactic protein 1 induction:implications for herniated discs[J]. Arthritis Rheum, 2008,58(11):3510-3519. [48] ZHU Y, OHBA T, ANDO T, et al. Endogenous TGF-β activity limits TSLP expression in the intervertebral disc tissue by suppressing NF-κB activation[J]. J Orthop Res, 2013, 31(7):1144-1149. [49] ZHANG Y, ALEXANDER P B, WANG X F. TGF-β family signaling in the control of cell proliferation and survival[J]. Cold Spring Harb Perspect Biol, 2017, 9(4):a022145. [50] SAITO A, HORIE M, NAGASE T. TGF-β signaling in lung health and disease[J]. Int J Mol Sci, 2018, 19(8):2460. [51] CHEN S, LIU S, MA K, et al. TGF-β signaling in intervertebral disc health and disease[J]. Osteoarthr Cartil, 2019, 27(8):1109-1117. [52] BIAN Q, JAIN A, XU X, et al. Excessive activation of TGFβ by spinal instability causes vertebral endplate sclerosis[J]. Sci Rep, 2016, 6:27093. [53] HU Y, TANG J S, HOU S X, et al. Neuroprotective effects of curcumin alleviate lumbar intervertebral disc degeneration through regulating the expression of iNOS, COX-2, TGF-β1/2, MMP-9 and BDNF in a rat model[J]. Mol Med Rep, 2017, 16(5):6864-6869. [54] KWON Y J, LEE J W, MOON E J, et al. Anabolic effects of Peniel 2000, a peptide that regulates TGF-beta1 signaling on intervertebral disc degeneration[J]. Spine (Phila Pa 1976), 2013,38(2):E49-58. [55] FINNSON K W, PARKER W L, TEN DIJKE P, et al. ALK1 opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes[J]. J Bone Miner Res, 2008, 23(6):896-906. [56] COLOMBIER P, CLOUET J, BOYER C, et al. TGF-β1 and GDF5 act synergistically to drive the differentiation of human adipose stromal cells toward Nucleus pulposus-like cells[J]. Stem Cells, 2016, 34(3):653-667. [57] RISBUD M V, SCHOEPFLIN Z R, MWALE F, et al. Defining the phenotype of young healthy nucleus pulposus cells:Recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting[J]. J Orthop Res, 2015, 33(3):283-293. [58] LEHMANN T P, JAKUB G, HARASYMCZUK J, et al. Transforming growth factor β mediates communication of co-cultured human nucleus pulposus cells and mesenchymal stem cells[J]. J Orthop Res, 2018, 36(11):3023-3032. [59] HENRY N, CLOUET J, FRAGALE A, et al. Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-β1:new insight into intervertebral disc regenerative medicine[J]. Drug Deliv, 2017, 24(1):999-1010. |