• •
收稿日期:
2023-09-05
出版日期:
2024-01-26
发布日期:
2024-01-26
通讯作者:
杨宇
E-mail:yang_yu@jlu.edu.cn
作者简介:
王 快(1999-),女,吉林省榆树市人,在读硕士研究生,主要从事阿尔茨海默症方面的研究。
基金资助:
Received:
2023-09-05
Online:
2024-01-26
Published:
2024-01-26
Contact:
Yu YANG
E-mail:yang_yu@jlu.edu.cn
摘要:
小胶质细胞作为中枢神经系统固有的免疫细胞,在阿尔茨海默症(AD)中发挥免疫应答功能,一方面吞噬清除异常蛋白及凋亡神经元,避免损伤进一步扩大,另一方面诱导慢性神经炎症,进一步加剧病理损伤。以往的研究认为小胶质细胞激活后的功能变化是AD病理所引起的,然而近年来基因组学的发现打破这一认知。大规模全基因组关联分析(GWAS)和全基因组/外显子测序研究已经明确了70余个AD风险位点。在这些风险基因座中,大部分基因变体参与编码小胶质细胞功能相关分子或影响小胶质细胞功能基因的转录活性。功能及通路分析发现上述风险位点主要富集在调控小胶质细胞吞噬功能、脂质代谢和免疫应答等功能的信号通路上,提示小胶质细胞不仅作为对AD病理的“应答者”,同时也是AD病理发生的“参与者”。对上述易感基因的深入研究有助于进一步拓展小胶质细胞在AD的调控机制与功能谱。现基于遗传学研究对目前发现的小胶质细胞相关AD易感基因及其调节机制进行综述。
中图分类号:
王快, 杨宇. 阿尔茨海默症中小胶质细胞相关易感基因及其作用机制的研究进展[J]. 吉林大学学报(医学版), 2024, (): 1-11.
Kuai WANG, Yu YANG. Research progress in microglia-related risk genes in Alzheimer’s disease and their mechanisms[J]. Journal of Jilin University(Medicine Edition), 2024, (): 1-11.
表1
小胶质细胞相关的AD易感基因及其功能调节"
Gene | Protein function in AD | Risk variant | Variants effect on microglial function | AD risk | Reference |
---|---|---|---|---|---|
TREM2(6p21.1) | Phagocytosis Immune response Metabolic fitness | rs75932628 rs143332484 rs10947943 | Impaired phagocytosis Neuroinflammation Reduces mitochondrial respiratory capacity and glycolytic metabolic | Increase | [ |
SORL1(11q24.1) | Functions as endosomal trafficking receptor and mediates endocytosis Intracellular APP transportation and proteolysis | rs11218343 rs74685827 | Impaired endocytosis Affects DAM transition | Increase | [ |
CD33(19q13.41) | Binds sialic acids and inhibits phagocytosis mediated by TREM2 Immune response | rs3865444 rs12459419 | Alteration in alternative splicing of CD33 Affects activation of TREM2/DAP12 signaling pathway | Increase/Decrease | [ |
CR1(1q32.2) | Complement receptor for C3b/C4b and C1q Promotes phagocytosis as an opsonin | rs679515 rs3818361 rs6656401 | Reduces induced Aβ clearance by complement Affects complement system cascade | Increase | [ |
PLCG2(16q24.1) | Acts downstream of TREM2 signaling pathway Intracellular calcium release | rs72824905 rs12446759 | Regulates phagocytosis Regulates DAM related genes expression | Increase/Decrease | [ |
MS4A(11q12.2) | Intracellular protein trafficking Lipid sensing Phagocytosis | rs6591561 rs1582763 | Related to TREM2 processing Associated with the level of sTREM2 Immune response /complement system | Increase/Decrease | [ |
PILRA(7q22.1) | Binds sialic acids and inhibits phagocytosis mediated by TREM2 Mediates invasion of HSV-1 into cells | rs1859788 | Reduces inhibitory signaling in microglia Reduces microglial infection during HSV-1 recurrence | Decrease | [ |
CLU/APOJ(8p21.1) | Bind Aβ and lipids Phagocytosis Lipids metabolism Immune response | rs11787077 rs11136000 rs2279590 | Reduces Aβ phagocytic clearance | Increase | [ |
PICALM(11q14.2) | Endo-lysosomal trafficking Lipids metabolism | rs3851179 | Rescues endocytic defects caused by APOE4 Regulates microglial lipid droplet formation | Decrease | [ |
ABI3 (17q21.32) | Cytoskeleton rearrangement Focal adhesion Cell migration Phagocytosis | rs616338 | Impairs microglial migration and phagocytosis Increases Aβ deposition | Increase | [ |
B1N1(2q14.3) | Endo-lysosomal trafficking Cytoskeleton | rs6733839 | Impaired phagocytosis Promotes inflammation | Increase | [ |
ZYX(7q34-q35) | Actin cytoskeletal rearrangement Cell migration Synaptic development and plasticity | rs11771145 | Affects immune response and endocytosis Disruption of the blood-brain barrier integrity | Increase | [ |
GRN(17q21) | Lysosomal degradation | rs5848 | Lysosomal dysfunction Lipid dysregulation Microglial hyperactivation | Increase | [ |
APOE(19q13.2) | Acts as an opsonin and facilitates Phagocytosis Mediates cholesterol efflux | rs429358 rs7412 | Affects lipid transportation and cholesterol efflux Affects immune response Enhances or reduces Aβ phagocytosis | Increase/Decrease | [ |
ABCA7(19p13.3) | Lipids metabolism/Lipids homeostasis Immune response Aβ phagocytosis and clearance | rs12151021 rs3752246 rs115550680 | Abnormal lipid metabolism Promotes APP processing into Aβ Reduced microglial clearance of Aβ | Increase | [ |
INPP5D|(2q.37.1) | Interacts with DAP12 and inhibits downstream of TREM2 signaling pathway | rs10933431 | Reduces inhibitory signaling of TREM2 | Decrease | [ |
SPI1/PU.1 (11p11.2) | Regulates microglial transcriptome | rs10437655 rs3740688 | Decreases PU.1 expression and regulates microglial inflammatory response | Decrease | [ |
HLA-DRB1(6p21.32) | Involves in immune responses including antigen processing and presentation, as well as immune cell self-recognition | rs9271058 | Induces microglial activation | Increase | [ |
1 | KNOPMAN D S, AMIEVA H, PETERSEN R C,et al. Alzheimer disease[J].Nat Rev Dis Primers,2021,7(1): 33. |
2 | LI M L, WU S H, SONG B, et al. Single-cell analysis reveals transcriptomic reprogramming in aging primate entorhinal cortex and the relevance with Alzheimer’s disease[J]. Aging Cell, 2022, 21(11): e13723. |
3 | GAO C, JIANG J W, TAN Y Y, et al. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 359. |
4 | BELLENGUEZ C, KÜÇÜKALI F, JANSEN I E,et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias[J]. Nat Genet, 2022, 54(4): 412-436. |
5 | ANDREWS S J, RENTON A E, FULTON-HOWARD B, et al. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions[J].EBioMedicine, 2023, 90: 104511. |
6 | NOVIKOVA G, KAPOOR M, TCW J, et al. Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes[J]. Nat Commun, 2021, 12(1): 1610. |
7 | SCHWARTZENTRUBER J, COOPER S, LIU J Z, et al. Genome-wide meta-analysis, fine-mapping, and integrative prioritization implicate new Alzheimer’s disease risk genes[J]. Nat Genet, 2021,53(3): 392-402. |
8 | DECZKOWSKA A, WEINER A, AMIT I. The physiology, pathology, and potential therapeutic applications of the TREM2 signaling pathway[J]. Cell, 2020, 181(6): 1207-1217. |
9 | YEH F L, WANG Y Y, TOM I, et al. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-Beta by microglia[J]. Neuron, 2016, 91(2): 328-340. |
10 | FRANK S, BURBACH G J, BONIN M, et al. TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice[J]. Glia, 2008, 56(13): 1438-1447. |
11 | KEREN-SHAUL H, SPINRAD A, WEINER A,et al. A unique microglia type associated with restricting development of Alzheimer’s disease[J]. Cell, 2017, 169(7): 1276-1290.e17. |
12 | ULLAND T K, SONG W M, HUANG S C C, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease[J]. Cell, 2017, 170(4): 649-663.e13. |
13 | RIVEST S. TREM2 enables amyloid β clearance by microglia[J]. Cell Res, 2015, 25(5): 535-536. |
14 | WANG Y M, ULLAND T K, ULRICH J D, et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques[J]. J Exp Med, 2016, 213(5): 667-675. |
15 | YUAN P, CONDELLO C, KEENE C D, et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy[J]. Neuron, 2016, 90(4): 724-739. |
16 | Daniel LEE C Y, DAGGETT A, GU X, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models[J]. Neuron, 2018, 97(5): 1032-1048.e5. |
17 | JAIN N, LEWIS C A, ULRICH J D, et al. Chronic TREM2 activation exacerbates Aβ-associated tau seeding and spreading[J]. J Exp Med, 2023, 220(1): e20220654. |
18 | HOU J, CHEN Y, GRAJALES-REYES G, et al. TREM2 dependent and independent functions of microglia in Alzheimer’s disease.[J]. Mol Neurodegener, 2022, 17(1): 84. |
19 | KORVATSKA O, KIIANITSA K, RATUSHNY A, et al. Triggering receptor expressed on myeloid cell 2 R47H exacerbates immune response in Alzheimer’s disease brain[J]. Front Immunol, 2020, 11: 559342. |
20 | SAYED F A, KODAMA L, FAN L, et al. AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation[J]. Sci Transl Med, 2021, 13(622): eabe3947. |
21 | SERRANO-POZO A, DAS S, HYMAN B T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. The Lancet, Neurol, 2021, 20(1): 68-80. |
22 | LIU C C, LIU C C, KANEKIYO T, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy[J]. Nat Rev, Neurol, 2013,9(2): 106-118. |
23 | TCW J, QIAN L, PIPALIA N H, et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia[J]. Cell, 2022, 185(13): 2213-2233.e25. |
24 | Lin YT, SEO J, GAO F, et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types[J]. Neuron, 2018, 98:1141-1154.e7. |
25 | QIAN X H, CHEN S Y, LIU X L, et al. ABCA7-associated clinical features and molecular mechanisms in Alzheimer’s disease[J]. Mol Neurobiol, 2023,60(10):5548-5556. |
26 | ROECK A D, VAN BROECKHOVEN C, SLEEGERS K. The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics[J]. Acta Neuropathol, 2019, 138(2): 201-220. |
27 | JIAO B, XIAO X W, YUAN Z H, et al. Associations of risk genes with onset age and plasma biomarkers of Alzheimer’s disease: a large case-control study in mainland China[J]. Neuropsychopharmacology, 2022, 47(5): 1121-1127. |
28 | SAKAE N, LIU C C, SHINOHARA M, et al. ABCA7 deficiency accelerates amyloid-β generation and Alzheimer’s neuronal pathology[J]. J Neurosci, 2016, 36(13): 3848-3859. |
29 | AIKAWA T, REN Y X, YAMAZAKI Y, et al. ABCA7 haplodeficiency disturbs microglial immune responses in the mouse brain[J]. Proc Nat Acad Sci U S A, 2019, 116(47): 23790-23796. |
30 | FU Y, HSIAO J H T, PAXINOS G, et al. ABCA7 mediates phagocytic clearance of amyloid-β in the brain[J]. J Alzheimers Dis: JAD,2016,54(2): 569-584. |
31 | ESKANDARI-SEDIGHI G, JUNG J, MACAULEY M S. CD33 isoforms in microglia and Alzheimer’s disease: friend and foe[J]. Mol Aspect Med, 2023, 90: 101111. |
32 | GRICIUC A, SERRANO-POZO A, PARRADO A R, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta[J]. Neuron, 2013, 78(4): 631-643. |
33 | BHATTACHERJEE A, JUNG J, ZIA S, et al. The CD33 short isoform is a gain-of-function variant that enhances Aβ1-42 phagocytosis in microglia[J]. Mol Neurodegener, 2021, 16(1): 19. |
34 | TORTORA F, RENDINA A, ANGIOLILLO A,et al. CD33 rs2455069 SNP: correlation with Alzheimer’s disease and hypothesis of functional role[J]. Int J Mol Sci, 2022, 23(7): 3629. |
35 | MATTIOLA I, MANTOVANI A, LOCATI M. The tetraspan MS4A family in homeostasis, immunity, and disease[J]. Trends Immunol, 2021, 42(9): 764-781. |
36 | DEMING Y, FILIPELLO F, CIGNARELLA F,et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk[J]. Sci Transl Med, 2019, 11(505): eaau2291. |
37 | BRASE L, YOU S F, D’OLIVEIRA ALBANUS R D, et al. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers[J]. Nat Commun, 2023, 14(1): 2314. |
38 | PIMENOVA A A, HERBINET M, GUPTA I, et al. Alzheimer’s-associated PU.1 expression levels regulate microglial inflammatory response[J]. Neurobiol Dis, 2021, 148: 105217. |
39 | VAN ACKER Z P, BRETOU M, ANNAERT W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors[J]. Mol Neurodegener, 2019, 14(1): 20. |
40 | SUDWARTS A, RAMESHA S, GAO T W, et al. BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia[J]. Mol Neurodegener, 2022, 17(1): 33. |
41 | MENDSAIKHAN A, TOOYAMA I, WALKER D G. Microglial progranulin: involvement in Alzheimer’s disease and neurodegenerative diseases[J]. Cells, 2019, 8(3): 230. |
42 | ROMERO-MOLINA C, GARRETTI F, ANDREWS S J, et al. Microglial efferocytosis: Diving into the Alzheimer’s disease gene pool[J].Neuron,2022,110(21):3513-3533. |
43 | ULRICH J D, ULLAND T K, COLONNA M, et al. Elucidating the role of TREM2 in Alzheimer’s disease[J]. Neuron, 2017, 94(2): 237-248. |
44 | CAMPION D, CHARBONNIER C, NICOLAS G. SORL1 genetic variants and Alzheimer disease risk: a literature review and meta-analysis of sequencing data[J]. Acta Neuropathol, 2019, 138(2): 173-186. |
45 | ZHU X C, YU J T, JIANG T, et al. CR1 in Alzheimer’s disease[J]. Mol Neurobio, 2015, 51(2): 753-765. |
46 | LI K, RAN B, WANG Y, et al. PLCγ2 impacts microglia-related effectors revealing variants and pathways important in Alzheimer’s disease[J]. Front Cell Dev Biol, 2022,10:999061. |
47 | RATHORE N, RAMANI S R, PANTUA H, et al. Paired immunoglobulin-like Type 2 Receptor Alpha G78R variant alters ligand binding and confers protection to Alzheimer’s disease[J]. PLoS Genet, 2018,14(11): e1007427. |
48 | HAROLD D, ABRAHAM R, HOLLINGWORTH P, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, and shows evidence for additional susceptibility genes[J]. Nat Genet, 2009, 41(10): 1088-1093. |
49 | PADHY B, KAPUGANTI R S, HAYAT B, et al. Wide-spread enhancer effect of SNP rs2279590 on regulating epoxide hydrolase-2 and protein tyrosine kinase 2-beta gene expression[J]. Gene, 2023, 854: 147096. |
50 | KARAHAN H, SMITH D C, KIM B, et al. Deletion of Abi3 gene locus exacerbates neuropathological features of Alzheimer’s disease in a mouse model of Aβ amyloidosis[J]. Sci Adv, 2021, 7(45): eabe3954. |
51 | LI Y H, LAWS S M, MILES L A, et al. Genomics of Alzheimer’s disease implicates the innate and adaptive immune systems[J]. Cell Mol Life Sci, 2021, 78(23): 7397-7426. |
52 | SMITH A M, DAVEY K, TSARTSALIS S, et al. Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology[J]. Acta Neuropathol, 2022, 143(1): 75-91. |
[1] | 胡志宽,何思琦,蒋维杰,赵贵芳,张佳,齐玲. 脂多糖对小鼠视网膜Müller细胞和小胶质细胞共培养体系中炎症因子水平的影响及其机制[J]. 吉林大学学报(医学版), 2023, 49(5): 1140-1146. |
[2] | 张德洪,郑明珠,李家秋,路中. 基于MSR1 mRNA和蛋白在泛癌组织中表达的生物信息学分析及其意义[J]. 吉林大学学报(医学版), 2023, 49(2): 425-439. |
[3] | 黄爽,陈琛,黄波. 柠檬苦素对营养性肥胖大鼠脂质代谢和肠道菌群的影响[J]. 吉林大学学报(医学版), 2022, 48(4): 858-865. |
[4] | 裴丹, 刘学. 抑制PDGFRα活化对小鼠脑损伤后胶质细胞增殖和瘢痕形成的影响[J]. 吉林大学学报(医学版), 2020, 46(05): 1023-1028. |
[5] | 杨吉平, 费琳, 柴学军, 苟兴春. MyD88抑制肽对LPS诱导BV2小胶质细胞极化状态的抑制作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(05): 899-904. |
[6] | 冉楠, 马明星, 庞志强, 王泽雨, 刘月, 郑瑞鹏, 卢俊英, 张超, 陈光, 章宏, 王放. 血栓形成易感基因芯片的研制及效果评价[J]. 吉林大学学报(医学版), 2020, 46(01): 182-187. |
[7] | 江仁, 冯智英, 李平, 李红, 李双月. 坐骨神经脉冲射频对慢性坐骨神经压迫损伤模型大鼠脊髓背角胶质细胞活化水平的影响及其镇痛作用[J]. 吉林大学学报(医学版), 2019, 45(01): 45-50. |
[8] | 孙敏英, 周红月, 接晶, 谢飞, 翟瑞萍, 陈潭秀, 袁红艳, 台桂香. 胸腺肽α1诱导MUC1特异性Th2型免疫应答[J]. 吉林大学学报(医学版), 2018, 44(02): 299-304. |
[9] | 魏静波, 刘辉, 朱小茼, 刘聪慧, 曲银娥. 药物流产后蜕膜组织中IL-10和IL-12表达水平及其对异常子宫出血的影响[J]. 吉林大学学报(医学版), 2016, 42(01): 134-138. |
[10] | 李玉珍, 官鑫, 程熠, 刘雅文, 李勇. 非Ca2+依赖型磷脂酶A2基因单核苷酸多态性与2型糖尿病发病的关联性分析[J]. 吉林大学学报(医学版), 2016, 42(01): 104-108. |
[11] | 任博,孙法威,张作凤,张宇新. 丹参酮ⅡA对帕金森病模型小鼠多巴胺能神经元的保护作用及其机制[J]. 吉林大学学报(医学版), 2014, 40(05): 947-952. |
[12] | 魏静波,刘 辉,谢朝辉,曲银娥. 结直肠癌组织中树突状细胞标志物CD1a和CD83的表达及意义[J]. 吉林大学学报(医学版), 2014, 40(04): 847-850. |
[13] | 梁巍, 郑雅娟, 辛华. 氯离子转运通道在人视网膜色素上皮细胞吞噬过程中的作用[J]. J4, 2010, 36(1): 1-4. |
[14] | 郑雅娟,辛 华,刘赤兵,韩秀清,张文松. 阴离子交换蛋白阻滞剂DIDS对人视网膜色素上皮细胞非特异性吞噬过程的影响[J]. J4, 2006, 32(5): 766-769. |
[15] | 韩春姬,王冬明,俞 星,李莲姬,朴永泉. 轮叶党参乙醇提取液预防大鼠脂质代谢紊乱的机制[J]. J4, 2005, 31(4): 564-566. |
|