• •
收稿日期:2025-07-24
接受日期:2025-09-14
通讯作者:
朴美花
E-mail:pumh@jlu.edu.cn
作者简介:陈鑫旭(1998-),女,吉林省长春市人,在读硕士研究生,主要从事临床麻醉学方面的研究。
基金资助:
Xinxu CHEN,Shengchun CHEN,Chunsheng FENG,Meihua PIAO(
)
Received:2025-07-24
Accepted:2025-09-14
Contact:
Meihua PIAO
E-mail:pumh@jlu.edu.cn
摘要:
烧伤后慢性疼痛是一种常见且难治的并发症,其发生涉及神经损伤、中枢敏化和神经炎症等多重机制,病理生理基础主要包括外周神经纤维异常再生、背根神经节表观遗传重编程、脊髓胶质细胞激活和促炎信号通路介导的神经元超兴奋性。艾司氯胺酮作为N-甲基-D-天冬氨酸(NMDA)受体拮抗剂,可通过抑制谷氨酸能信号、调节突触可塑性和拮抗神经炎症等多途径发挥镇痛作用。该药物可有效缓解烧伤患者急性和慢性疼痛,减少阿片类药物用量,并改善其情绪与认知功能。现对艾司氯胺酮在烧伤后慢性疼痛中的作用机制、临床疗效和用药策略进行综述,从烧伤严重程度、部位和年龄等维度提出分层镇痛策略,总结其短期和长期安全性及不良反应,以期为艾司氯胺酮在烧伤后慢性疼痛管理中的精准应用提供理论依据及临床参考。
中图分类号:
陈鑫旭,陈胜春,冯春生,朴美花. 烧伤后慢性疼痛病理机制及艾司氯胺酮镇痛策略的研究进展[J]. 吉林大学学报(医学版), 2025, (): 1-11.
Xinxu CHEN,Shengchun CHEN,Chunsheng FENG,Meihua PIAO. Research progress in pathology mechanism of burn injury-induced chronic pain and analgesic strategy with esketamine[J]. Journal of Jilin University(Medicine Edition), 2025, (): 1-11.
| [1] | GARRIGA J, LAUMET G, CHEN S R, et al. Nerve injury-induced chronic pain is associated with persistent DNA methylation reprogramming in dorsal root ganglion[J]. J Neurosci, 2018, 38(27): 6090-6101. |
| [2] | QIU X Y, YANG Y Z, DA X L, et al. Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms[J]. Neural Regen Res, 2024, 19(5): 1056-1063. |
| [3] | GALOSI E, CESA S L, DI STEFANO G, et al. A pain in the skin. Regenerating nerve sprouts are distinctly associated with ongoing burning pain in patients with diabetes[J]. Eur J Pain, 2018, 22(10): 1727-1734. |
| [4] | KLIFTO K M, HULTMAN C S, DELLON A L. Nerve pain after burn injury: a proposed etiology-based classification[J]. Plast Reconstr Surg, 2021, 147(3): 635-644. |
| [5] | BLAIS M, PARENTEAU-BAREIL R, CADAU S, et al. Concise review: tissue-engineered skin and nerve regeneration in burn treatment[J]. Stem Cells Transl Med, 2013, 2(7): 545-551. |
| [6] | HUANG S H, WU S H, CHANG K P, et al. Autologous fat grafting alleviates burn-induced neuropathic pain in rats[J]. Plast Reconstr Surg, 2014, 133(6): 1396-1405. |
| [7] | SUN L L, GU X Y, PAN Z Q, et al. Contribution of DNMT1 to neuropathic pain genesis partially through epigenetically repressing Kcna2 in primary afferent neurons[J]. J Neurosci, 2019, 39(33): 6595-6607. |
| [8] | TRACY G C, WILTON A R, RHODES J S, et al. Heterozygous deletion of epilepsy gene KCNQ2 has negligible effects on learning and memory[J]. Front Behav Neurosci, 2022, 16: 930216. |
| [9] | CHEN J J, LI L Y, CHEN S R, et al. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions[J]. Cell Rep, 2018, 22(9): 2307-2321. |
| [10] | LEE S Y, PARK C H, CHO Y S, et al. Scrambler therapy for chronic pain after burns and its effect on the cerebral pain network: a prospective, double-blinded, randomized controlled trial[J]. J Clin Med, 2022, 11(15): 4255. |
| [11] | KRISHNAN A V. Ion channel dysfunction and peripheral nerve hyperexcitability[J]. Clin Neurophysiol, 2015, 126(6): 1069-1070. |
| [12] | TAMAM Y, TAMAM C, TAMAM B, et al. Peripheral neuropathy after burn injury[J]. Eur Rev Med Pharmacol Sci, 2013, 17(): 107-111. |
| [13] | ROY T K, UNIYAL A, AKHILESH, et al. Multifactorial pathways in burn injury-induced chronic pain: novel targets and their pharmacological modulation[J]. Mol Biol Rep, 2022, 49(12): 12121-12132. |
| [14] | STRONG A L, AGARWAL S, CEDERNA P S, et al. Peripheral neuropathy and nerve compression syndromes in burns[J]. Clin Plast Surg, 2017, 44(4): 793-803. |
| [15] | JOO S Y, PARK C H, CHO Y S, et al. Plastic changes in pain and motor network induced by chronic burn pain[J]. J Clin Med, 2021, 10(12): 2592. |
| [16] | WU J F, ZHAO Z R, SABIRZHANOV B, et al. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways[J]. J Neurosci, 2014, 34(33): 10989-11006. |
| [17] | WANG D M, COUTURE R, HONG Y G. Activated microglia in the spinal cord underlies diabetic neuropathic pain[J]. Eur J Pharmacol, 2014, 728: 59-66. |
| [18] | SCHOMBERG D, OLSON J K. Immune responses of microglia in the spinal cord: contribution to pain states[J]. Exp Neurol, 2012, 234(2): 262-270. |
| [19] | THOMAS CHENG H. Spinal cord mechanisms of chronic pain and clinical implications[J]. Curr Pain Headache Rep, 2010, 14(3): 213-220. |
| [20] | JI R R, NACKLEY A, HUH Y, et al. Neuroinflammation and central sensitization in chronic and widespread pain[J]. Anesthesiology, 2018, 129(2): 343-366. |
| [21] | LEWIS S. Pain: microglia take control in chronic pain[J]. Nat Rev Neurosci, 2013, 14(3): 154. |
| [22] | ZHANG R, XU B, ZHANG N, et al. Spinal microglia-derived TNF promotes the astrocytic JNK/CXCL1 pathway activation in a mouse model of burn pain[J]. Brain Behav Immun, 2022, 102: 23-39. |
| [23] | TSUDA M. Microglia-mediated regulation of neuropathic pain: molecular and cellular mechanisms[J]. Biol Pharm Bull, 2019, 42(12): 1959-1968. |
| [24] | LU H J, GAO Y J. Astrocytes in chronic pain: cellular and molecular mechanisms[J]. Neurosci Bull, 2023, 39(3): 425-439. |
| [25] | SHI J H, SUN S C. Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways[J]. Front Immunol, 2018, 9: 1849. |
| [26] | TSAI C L, CHEN W C, HSIEH H L, et al. TNF-α induces matrix metalloproteinase-9-dependent soluble intercellular adhesion molecule-1 release via TRAF2-mediated MAPKs and NF-κB activation in osteoblast-like MC3T3-E1 cells[J]. J Biomed Sci, 2014, 21(1): 12. |
| [27] | MILLER R J, JUNG H, BHANGOO S K, et al. Cytokine and chemokine regulation of sensory neuron function[J]. Handb Exp Pharmacol, 2009(194): 417-449. |
| [28] | ZHUANG Z Y, GERNER P, WOOLF C J, et al. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model[J]. Pain, 2005, 114(1/2): 149-159. |
| [29] | WALRATH T, MCMAHAN R H, IDROVO J P, et al. Cutaneous burn injury induces neuroinflammation and reactive astrocyte activation in the hippocampus of aged mice[J]. Exp Gerontol, 2022, 169: 111975. |
| [30] | TAYLOR A M W, MEHRABANI S, LIU S, et al. Topography of microglial activation in sensory- and affect-related brain regions in chronic pain[J]. J Neurosci Res, 2017, 95(6): 1330-1335. |
| [31] | KLIFTO K M, DELLON A L, HULTMAN C S. Risk factors associated with the progression from acute to chronic neuropathic pain after burn-related injuries[J]. Ann Plast Surg, 2020, 84(6S ): S382-S385. |
| [32] | WENG X C, SMITH T, SATHISH J, et al. Chronic inflammatory pain is associated with increased excitability and hyperpolarization-activated current (Ih) in C- but not Aδ-nociceptors[J]. Pain, 2012, 153(4): 900-914. |
| [33] | WU Z Z, LI L, XIE F H, et al. Activation of KCNQ channels suppresses spontaneous activity in dorsal root ganglion neurons and reduces chronic pain after spinal cord injury[J]. J Neurotrauma, 2017, 34(6): 1260-1270. |
| [34] | HAIGHT E S, FORMAN T E, CORDONNIER S A, et al. Microglial modulation as a target for chronic pain: from the bench to the bedside and back[J]. Anesth Analg, 2019, 128(4): 737-746. |
| [35] | CHEN G, ZHANG Y Q, QADRI Y J, et al. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain[J]. Neuron, 2018, 100(6): 1292-1311. |
| [36] | GANGADHARAN V, ZHENG H W, TABERNER F J, et al. Neuropathic pain caused by miswiring and abnormal end organ targeting[J]. Nature, 2022, 606(7912): 137-145. |
| [37] | ZHANG Y Y, YE F, ZHANG T T, et al. Structural basis of ketamine action on human NMDA receptors[J]. Nature, 2021, 596(7871): 301-305. |
| [38] | KAUR U, PATHAK B K, SINGH A, et al. Esketamine: a glimmer of hope in treatment-resistant depression[J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(3): 417-429. |
| [39] | LISEK M, ZYLINSKA L, BOCZEK T. Ketamine and calcium signaling-a crosstalk for neuronal physiology and pathology[J]. Int J Mol Sci, 2020, 21(21): 8410. |
| [40] | ALEKSANDROVA L R, PHILLIPS A G, WANG Y T. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism[J]. J Psychiatry Neurosci, 2017, 42(4): 222-229. |
| [41] | MOLERO P, RAMOS-QUIROGA J A, MARTIN-SANTOS R, et al. Antidepressant efficacy and tolerability of ketamine and esketamine: a critical review[J]. CNS Drugs, 2018, 32(5): 411-420. |
| [42] | RIZZO A, GARÇON-POCA M Z, ESSMANN A, et al. The dopaminergic effects of esketamine are mediated by a dual mechanism involving glutamate and opioid receptors[J]. Mol Psychiatry, 2025, 30(8): 3443-3454. |
| [43] | COOK J, HALARIS A. Adjunctive dopaminergic enhancement of esketamine in treatment-resistant depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2022, 119: 110603. |
| [44] | SONG H, LUO Y, FANG L Z. Esketamine nasal spray: rapid relief for TRD and suicide prevention-mechanisms and pharmacodynamics[J]. Neuropsychiatr Dis Treat, 2024, 20: 2059-2071. |
| [45] | JANG G, MACIVER M B. Ketamine produces a long-lasting enhancement of CA1 neuron excitability[J]. Int J Mol Sci, 2021, 22(15): 8091. |
| [46] | JI X M, HUANG Z M, ZHOU C M, et al. Esketamine alleviates depressive-like behavior in neuropathic pain mice through the METTL3-GluA1 pathway[J]. Cell Biol Toxicol, 2025, 41(1): 38. |
| [47] | XU J C, LI M C, HU Y, et al. Esketamine reduces postoperative depression in breast cancer through TREK-1 channel inhibition and neurotransmitter modulation[J]. Cancer Cell Int, 2025, 25(1): 51. |
| [48] | WANG L J, ZHAO S W, SHAO J L, et al. The effect and mechanism of low-dose esketamine in neuropathic pain-related depression-like behavior in rats[J]. Brain Res, 2024, 1843: 149117. |
| [49] | DUAN C X, ZHU Y, ZHANG Z L, et al. Esketamine inhibits the c-Jun N-terminal kinase pathway in the spinal dorsal horn to relieve bone cancer pain in rats[J]. Mol Pain, 2024, 20: 17448069241239231. |
| [50] | LI H, HU W, WU Z, et al. Esketamine improves cognitive function in sepsis-associated encephalopathy by inhibiting microglia-mediated neuroinflammation[J]. Eur J Pharmacol, 2024, 983: 177014. |
| [51] | HAN L C, TIAN B Z, LI S Y. Esketamine has promising anti-inflammatory effects in orthopedic surgery and plays a protective role in postoperative cognitive function and pain management[J]. Am J Transl Res, 2025, 17(1): 277-285. |
| [52] | LIU Y F, GONG Z, ZHANG L F, et al. Esketamine attenuates traumatic brain injury by modulating STAT3-mediated Glycolysis and immune responses[J]. BMC Neurosci, 2025, 26(1): 21. |
| [53] | LI X H, MIAO H H, ZHUO M. NMDA receptor dependent long-term potentiation in chronic pain[J]. Neurochem Res, 2019, 44(3): 531-538. |
| [54] | MANCINI M, GHIGLIERI V, BAGETTA V, et al. Memantine alters striatal plasticity inducing a shift of synaptic responses toward long-term depression[J]. Neuropharmacology, 2016, 101: 341-350. |
| [55] | HUANG L T, YANG X J, HUANG Y, et al. Ketamine protects gamma oscillations by inhibiting hippocampal LTD[J]. PLoS One, 2016, 11(7): e0159192. |
| [56] | HUANG Y Y, CHEN S R, CHEN H, et al. Theta-burst stimulation of primary afferents drives long-term potentiation in the spinal cord and persistent pain via α2δ-1-bound NMDA receptors[J]. J Neurosci, 2022, 42(3): 513-527. |
| [57] | PADAMSEY Z, TONG R D, EMPTAGE N. Glutamate is required for depression but not potentiation of long-term presynaptic function[J]. eLife, 2017, 6: e29688. |
| [58] | WANG J F, FENG Y K, QI Z, et al. The role and mechanism of esketamine in preventing and treating remifentanil-induced hyperalgesia based on the NMDA receptor-CaMKII pathway[J]. Open Life Sci, 2024, 19(1): 20220816. |
| [59] | GAO Y, LI L, ZHAO F, et al. Esketamine at a clinical dose attenuates cerebral ischemia/reperfusion injury by inhibiting AKT signaling pathway to facilitate microglia M2 polarization and autophagy[J]. Drug Des Devel Ther, 2025, 19: 369-387. |
| [60] | WU H, SAVALIA N K, KWAN A C. Ketamine for a boost of neural plasticity: how, but also when?[J]. Biol Psychiatry, 2021, 89(11): 1030-1032. |
| [61] | PAN B, HILLARD C J, LIU Q S. D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling[J]. J Neurosci, 2008, 28(52): 14018-14030. |
| [62] | XU M, WANG J L, SHI J, et al. Esketamine mitigates endotoxin-induced hippocampal injury by regulating calcium transient and synaptic plasticity via the NF-α1/CREB pathway[J]. Neuropharmacology, 2025, 269: 110362. |
| [63] | LEI Y S, LIU H Y, XIA F, et al. Effects of esketamine on acute and chronic pain after thoracoscopy pulmonary surgery under general anesthesia: a multicenter-prospective, randomized, double-blind, and controlled trial[J]. Front Med, 2021, 8: 693594. |
| [64] | MANGNUS T J P, DIRCKX M, BHARWANI K D, et al. Intermittent versus continuous esketamine infusions for long-term pain modulation in complex regional pain syndrome: protocol of a randomized controlled non-inferiority study (KetCRPS-2)[J]. BMC Musculoskelet Disord, 2023, 24(1): 239. |
| [65] | WANG M, XIONG H P, SHENG K, et al. Perioperative administration of pregabalin and esketamine to prevent chronic pain after breast cancer surgery: a randomized controlled trial[J]. Drug Des Devel Ther, 2023, 17: 1699-1706. |
| [66] | WANG H J, WANG Z C, ZHANG J B, et al. Perioperative esketamine combined with butorphanol versus butorphanol alone for pain management following video-assisted lobectomy: a randomized controlled trial[J]. Int J Clin Pharm, 2025, 47(2): 452-461. |
| [67] | JUAN S, LU X, ZHOU J H, et al. Efficacy of esketamine for chronic post-thoracotomy pain: protocol for a systematic review and meta-analysis[J]. BMJ Open, 2024, 14(12): e092131. |
| [68] | HE Q L, LIU Q, LIANG B, et al. Esketamine use for primary intelligent analgesia in adults with severe burns: a double-blind randomized trial with effects on analgesic efficacy, gastrointestinal function and mental state[J]. Burns, 2024, 50(9): 107187. |
| [69] | CHEN H Z, GAO Y, LI K K, et al. Effect of intraoperative injection of esketamine on postoperative analgesia and postoperative rehabilitation after cesarean section[J]. World J Clin Cases, 2024, 12(28): 6195-6203. |
| [70] | ZHU S Y, WANG D, GAO H Y, et al. Clinical value of esketamine combined with ropivacaine in rebound pain after brachial plexus block in patients with upper limb fractures[J]. Front Surg, 2024, 11: 1470205. |
| [71] | MA X F, YAN J, JIANG H. Application of ketamine in pain management and the underlying mechanism[J]. Pain Res Manag, 2023, 2023: 1928969. |
| [72] | ABDOLLAHPOUR A, SAFFARIEH E, ZOROUFCHI B H. A review on the recent application of ketamine in management of anesthesia, pain, and health care[J]. J Family Med Prim Care, 2020, 9(3): 1317-1324. |
| [73] | ZHANG J Y, WANG F, DANG J J, et al. Effect of intraoperative infusion of esketamine on quality of postoperative recovery in patients undergoing laparoscopic bariatric surgery: a randomized controlled trial[J]. Pain Ther, 2023, 12(4): 979-992. |
| [74] | GRIGGS C, GOVERMAN J, BITTNER E A, et al. Sedation and pain management in burn patients[J]. Clin Plast Surg, 2017, 44(3): 535-540. |
| [75] | STANTON E, WON P, MANASYAN A, et al. Neuropathic pain in burn patients–A common problem with little literature: a systematic review[J]. Burns, 2024, 50(5): 1053-1061. |
| [76] | YANG H, ZHAO Q, CHEN H Y, et al. The Median effective concentration of propofol with different doses of esketamine during gastrointestinal endoscopy in elderly patients: a randomized controlled trial[J]. Br J Clin Pharmacol, 2022, 88(3): 1279-1287. |
| [77] | 贾梦倩, 袁心刚. 烧伤儿童药物镇静镇痛的现状及研究进展[J]. 中华烧伤与创面修复杂志, 2022, 38(2): 190-195. |
| [78] | MARTEL M O, FINAN P H, DOLMAN A J, et al. Self-reports of medication side effects and pain-related activity interference in patients with chronic pain: a longitudinal cohort study[J]. Pain, 2015, 156(6): 1092-1100. |
| [79] | HOLTMAN J R Jr, JELLISH W S. Opioid-induced hyperalgesia and burn pain[J]. J Burn Care Res, 2012, 33(6): 692-701. |
| [80] | LABIANCA R, SARZI-PUTTINI P, ZUCCARO S M, et al. Adverse effects associated with non-opioid and opioid treatment in patients with chronic pain[J]. Clin Drug Investig, 2012, 32(): 53-63. |
| [81] | DE FREITAS MENEZES SOBREIRO M, SILVEIRA P S P, CAVENAGHI V B, et al. Long-term cognitive outcomes of esketamine nasal spray in treatment-resistant depression: a preliminary report[J]. Pharmaceuticals, 2025, 18(2): 173. |
| [82] | LUO Y Y, YU Y, ZHANG M L, et al. Chronic administration of ketamine induces cognitive deterioration by restraining synaptic signaling[J]. Mol Psychiatry, 2021, 26(9): 4702-4718. |
| [83] | HUNG K C, KAO C L, HO C N, et al. Efficacy and safety of esketamine in preventing perioperative neurocognitive disorders: a meta-analysis of randomized controlled studies[J]. Syst Rev, 2025, 14(1): 68. |
| [84] | FOUNTOULAKIS K N, SAITIS A, SCHATZBERG A F. Esketamine treatment for depression in adults: a PRISMA systematic review and meta-analysis[J]. Am J Psychiatry, 2025, 182(3): 259-275. |
| [85] | ZHOU X H, ZHANG L, GAO W W, et al. Esketamine alleviates cognitive impairment signs induced by modified electroconvulsive therapy in a depression rat model via the KLF4/p38 MAPK pathway[J]. J Affect Disord, 2025, 376: 302-312. |
| [86] | CHU C C, SHIEH J P, SHUI H A, et al. Tianeptine reduces morphine antinociceptive tolerance and physical dependence[J]. Behav Pharmacol, 2010, 21(5/6): 523-529. |
| [87] | YOUNG A H, LLORCA P M, FAGIOLINI A, et al. Efficacy of esketamine nasal spray over quetiapine extended release over the short and long term: sensitivity analyses of ESCAPE-TRD, a randomised phase IIIb clinical trial - ERRATUM[J]. Br J Psychiatry, 2025, 227(3): 659-660. |
| [88] | ROSSO G, D’ANDREA G, BARLATI S, et al. Esketamine treatment trajectory of patients with treatment-resistant depression in the mid and long-term Run: data from REAL-ESK study group[J]. Curr Neuropharmacol, 2025, 23(5): 612-619. |
| [89] | SCHATZBERG A F, MATHEW S J. The why, when, where, how, and so what of so-called rapidly acting antidepressants[J]. Neuropsychopharmacology, 2024, 49(1): 189-196. |
| [1] | 吴岩,孔祥一,庞磊,杨振东. 不同剂量艾司氯胺酮复合丙泊酚静脉推注对增强CT检查患儿的镇静效果评价[J]. 吉林大学学报(医学版), 2025, 51(1): 150-156. |
| [2] | 宋吉玉,张祎,任庆源,聂瑾涵,胡敏,齐慧川. 不同镍钛弓丝对拔牙和非拔牙矫治患者正畸排齐效率和疼痛感知程度的影响[J]. 吉林大学学报(医学版), 2024, 50(5): 1372-1380. |
| [3] | 王瑞琨,段宗生,张文文,王虎山. 不同剂量艾司氯胺酮对胸腔镜下肺部分切除术患者瑞芬太尼诱发痛觉过敏的影响[J]. 吉林大学学报(医学版), 2024, 50(5): 1406-1413. |
| [4] | 刘秋平,刘涛,张雪竹. 带状疱疹后遗神经痛疼痛矩阵的研究进展[J]. 吉林大学学报(医学版), 2024, 50(3): 872-880. |
| [5] | 杨洋,牟柳全,谢忠士,姜南. 以不典型疼痛为首发症状的先天性腹内疝1例报告及文献复习[J]. 吉林大学学报(医学版), 2024, 50(1): 243-247. |
| [6] | 张锐,于澎,张浩,董雅儒,裴颖. 重度瘢痕性睑外翻个性化手术治疗1例报告及文献复习[J]. 吉林大学学报(医学版), 2023, 49(6): 1615-1619. |
| [7] | 姜政男,张溢珈,刘臻,陈云飞. 大鼠神经病理性疼痛模型的建立及其引起抑郁样状态伴失眠的机制[J]. 吉林大学学报(医学版), 2023, 49(4): 905-912. |
| [8] | 赵峰,樊少卿,程晓燕,李小娜,李长生,马浩杰. 鞘内注射瞬时受体电位通道A1 shRNA对部分坐骨神经结扎小鼠神经病理性疼痛的作用及其机制[J]. 吉林大学学报(医学版), 2021, 47(6): 1485-1494. |
| [9] | 徐宠俊,何荷蕃,林群,章涛. 人肝细胞生长因子基因慢病毒载体的构建及其在骨髓间充质干细胞中的表达[J]. 吉林大学学报(医学版), 2021, 47(1): 16-24. |
| [10] | 李安然, 连丽丽, 姚刚. 糖原合成酶激酶3β参与神经病理性疼痛的研究进展[J]. 吉林大学学报(医学版), 2020, 46(01): 188-193. |
| [11] | 江仁, 冯智英, 李平, 李红, 李双月. 坐骨神经脉冲射频对慢性坐骨神经压迫损伤模型大鼠脊髓背角胶质细胞活化水平的影响及其镇痛作用[J]. 吉林大学学报(医学版), 2019, 45(01): 45-50. |
| [12] | 卢银亮, 朱永刚, 张宁, 汤玉环, 程光惠. 宫颈癌近距离放射治疗疼痛管理的研究进展[J]. 吉林大学学报(医学版), 2019, 45(01): 211-216. |
| [13] | 成洪聚, 相龙全, 亚白柳, 刘文彦. 背根神经节神经元GABA A型受体对痛觉调制的研究进展[J]. 吉林大学学报(医学版), 2018, 44(06): 1322-1325. |
| [14] | 张雪晶, 曲福玲, 段晓琴, 刘颜芬, 刘忠良. 复杂性区域疼痛综合征治疗的研究进展[J]. 吉林大学学报(医学版), 2018, 44(05): 1090-1095. |
| [15] | 周明伟, 王连有, 姜日花, 朱明姬, 陈凤. A型肉毒素联合疗法治疗瘢痕疙瘩临床疗效和不良反应评价[J]. 吉林大学学报(医学版), 2017, 43(02): 386-390. |
|
||