1 | ROMAN B R, MORRIS L G, DAVIES L. The thyroid cancer epidemic, 2017 perspective[J]. Curr Opin Endocrinol Diabetes Obes, 2017, 24(5): 332-336. |
2 | TAKANO T. Natural history of thyroid cancer[J]. Endocr J, 2017, 64(3): 237-244. |
3 | BERDELOU A, LAMARTINA L, KLAIN M, et al. Treatment of refractory thyroid cancer[J]. Endocr Relat Cancer, 2018, 25(4): R209-R223. |
4 | CHOW L Q, SANTANA-DAVILA R, PANTEL A, et al. A phase I study of pazopanib in combination with escalating doses of 131I in patients with well-differentiated thyroid carcinoma borderline refractory to radioiodine[J]. PLoS One, 2017, 12(6): e0178325. |
5 | ZHANG X, LI Y, WANG D, et al. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1[J]. Biol Res,2017,50(1):27. |
6 | KANG M, XIAO J, WANG J, et al. MiR-24 enhances radiosensitivity in nasopharyngeal carcinoma by targeting SP1[J]. Cancer Med, 2016, 5(6): 1163-1173. |
7 | HUANG Y, YU S, CAO S, et al. MicroRNA-222 promotes invasion and metastasis of papillary thyroid cancer through targeting protein phosphatase 2 regulatory subunit B alpha expression[J]. Thyroid, 2018, 28(9): 1162-1173. |
8 | XIANG D P, TIAN B, YANG T Y, et al. miR-222 expression is correlated with the ATA risk stratifications in papillary thyroid carcinomas[J].Medicine,2019,98(25):e16050. |
9 | WAGUESPACK S G. Thyroid sequelae of pediatric cancer therapy[J]. Horm Res Paediatr,2019,91(2): 104-117. |
10 | YLLI D, DVAN NOSTRAND, WARTOFSKY L. Conventional radioiodine therapy for differentiated thyroid cancer[J]. Endocrinol Metab Clin North Am, 2019, 48(1): 181-197. |
11 | AVRAM A M, ROSCULET N, ESFANDIARI N H, et al. Differentiated thyroid cancer outcomes after surgery and activity-adjusted 131I theragnostics[J]. Clin Nucl Med, 2019, 44(1): 11-20. |
12 | XIANG C, ZHANG M L, ZHAO Q Z, et al. LncRNA-SLC6A9-5:2: A potent sensitizer in 131I-resistant papillary thyroid carcinoma with PARP-1 induction [J]. Oncotarget, 2017, 8(14):22954-22967. |
13 | ZHAO L, BODE A M, CAO Y, et al. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity[J]. Carcinogenesis, 2012, 33(11): 2220-2227. |
14 | TAN X Y, TANG H Y, BI J, et al. MicroRNA-222-3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer[J]. J Cell Biochem, 2018, 119(7): 5153-5162. |
15 | FU X, LI Y, ALVERO A, et al. MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival[J]. Oncotarget, 2016, 7(49): 80633-80654. |
16 | WEI F, MA C, ZHOU T, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p[J]. Mol Cancer, 2017, 16(1): 132. |
17 | ZHANG X F, YE Y, ZHAO S J. LncRNA Gas5 Acts as a ceRNA to regulate PTEN expression by sponging miR-222-3p in papillary thyroid carcinoma[J]. Oncotarget, 2018, 9(3): 3519-3530. |
18 | CHOI B H, XIE S, DAI W. PTEN is a negative regulator of mitotic checkpoint complex during the cell cycle[J]. Exp Hematol Oncol, 2017, 6: 19. |
19 | HADDADI N, LIN Y, TRAVIS G, et al. PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy[J].Mol Cancer, 2018, 17(1):37. |
20 | YAN Y, HUANG H. Interplay among PI3K/AKT, PTEN/FOXO and AR signaling in prostate cancer [J]. Adv Exp Med Biol, 2019, 1210:319-331. |
21 | HU M, ZHU S, XIONG S, et al. MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer[J]. Oncol Rep, 2019, 41(3):1439-1454. |
22 | WU W, CHEN X, YU S, et al. MicroRNA-222 promotes tumor growth and confers radioresistance in nasopharyngeal carcinoma by targeting PTEN [J]. Mol Med Rep, 2018, 17(1):1305-1310. |