1 |
FELLER L, KHAMMISSA R A G, FOURIE J, et al. Postherpetic neuralgia and trigeminal neuralgia[J]. Pain Res Treat, 2017, 2017: 1681765.
|
2 |
HASAN M A, VUCKOVIC A, QAZI S A, et al. Immediate effect of neurofeedback training on the pain matrix and cortical areas involved in processing neuropsychological functions[J]. Neurol Sci, 2021, 42(11): 4551-4561.
|
3 |
RAJA S N, CARR D B, COHEN M, et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises[J]. Pain, 2020, 161(9): 1976-1982.
|
4 |
CAO S, SONG G J, ZHANG Y, et al. Abnormal local brain activity beyond the pain matrix in postherpetic neuralgia patients: a resting-state functional MRI study[J]. Pain Physician, 2017, 20(2): E303-E314.
|
5 |
曹琬钰, 关丽明. 多模态磁共振成像在带状疱疹后神经痛的研究进展[J]. 磁共振成像, 2019, 10(2): 157-160.
|
6 |
CHEN F X, CHEN F Y, SHANG Z F, et al. White matter microstructure degenerates in patients with postherpetic neuralgia[J]. Neurosci Lett, 2017, 656: 152-157.
|
7 |
GARCIA-LARREA L, BASTUJI H. Pain and consciousness[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 87(Pt B): 193-199.
|
8 |
MOISSET X, BOUHASSIRA D. Brain imaging of neuropathic pain[J]. Neuroimage, 2007, 37(): S80-S88.
|
9 |
WAGER T D, ATLAS L Y, LINDQUIST M A, et al. An fMRI-based neurologic signature of physical pain[J]. N Engl J Med, 2013, 368(15): 1388-1397.
|
10 |
KANO M, GRINSVALL C, RAN Q, et al. Resting state functional connectivity of the pain matrix and default mode network in irritable bowel syndrome: a graph theoretical analysis[J]. Sci Rep, 2020, 10(1): 11015.
|
11 |
BANTICK S J, WISE R G, PLOGHAUS A, et al. Imaging how attention modulates pain in humans using functional MRI[J]. Brain, 2002, 125(Pt 2): 310-319.
|
12 |
KOYAMA T, MCHAFFIE J G, LAURIENTI P J, et al. The subjective experience of pain: where expectations become reality[J]. Proc Natl Acad Sci U S A, 2005, 102(36): 12950-12955.
|
13 |
SEMINOWICZ D A, DAVIS K D. Cortical responses to pain in healthy individuals depends on pain catastrophizing[J]. Pain, 2006, 120(3): 297-306.
|
14 |
GOADSBY P J, HOLLAND P R, MARTINS-OLIVEIRA M, et al. Pathophysiology of migraine: a disorder of sensory processing[J]. Physiol Rev, 2017, 97(2): 553-622.
|
15 |
IANNETTI G D, ZAMBREANU L, CRUCCU G, et al. Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans[J]. Neuroscience, 2005, 131(1): 199-208.
|
16 |
SCHWEINHARDT P, BOUNTRA C, TRACEY I. Pharmacological FMRI in the development of new analgesic compounds[J]. NMR Biomed, 2006, 19(6): 702-711.
|
17 |
BOLY M, FAYMONVILLE M E, SCHNAKERS C, et al. Perception of pain in the minimally conscious state with PET activation: an observational study[J]. Lancet Neurol, 2008, 7(11): 1013-1020.
|
18 |
MILLER G. Neuroscience. Brain scans of pain raise questions for the law[J]. Science, 2009, 323(5911): 195.
|
19 |
LIU J, HAO Y, DU M Y, et al. Quantitative cerebral blood flow mapping and functional connectivity of postherpetic neuralgia pain: a perfusion fMRI study[J]. Pain, 2013, 154(1): 110-118.
|
20 |
TANG Y, REN C H, WANG M H, et al. Altered gray matter volume and functional connectivity in patients with herpes zoster and postherpetic neuralgia[J]. Brain Res, 2021, 1769: 147608.
|
21 |
BORSOOK D, UPADHYAY J, CHUDLER E H, et al. A key role of the basal Ganglia in pain and analgesia: insights gained through human functional imaging[J]. Mol Pain, 2010, 6: 27.
|
22 |
GEHA P Y, BALIKI M N, CHIALVO D R, et al. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy[J]. Pain, 2007, 128(1/2): 88-100.
|
23 |
SCOTT D J, HEITZEG M M, KOEPPE R A, et al. Variations in the human pain stress experience mediated by ventral and dorsal basal Ganglia dopamine activity[J]. J Neurosci, 2006, 26(42): 10789-10795.
|
24 |
FRITZ H C, MCAULEY J H, WITTFELD K, et al. Chronic back pain is associated with decreased prefrontal and anterior insular gray matter: results from a population-based cohort study[J]. J Pain, 2016, 17(1): 111-118.
|
25 |
LIU X, GU L L, LIU J Q, et al. MRI study of cerebral cortical thickness in patients with herpes zoster and postherpetic neuralgia[J]. J Pain Res, 2022, 15: 623-632.
|
26 |
SCHMIDT-WILCKE T, HIERLMEIER S, LEINISCH E. Altered regional brain morphology in patients with chronic facial pain[J]. Headache, 2010, 50(8): 1278-1285.
|
27 |
MOON H C, PARK C A, JEON Y J, et al. 7 Tesla magnetic resonance imaging of caudal anterior cingulate and posterior cingulate cortex atrophy in patients with trigeminal neuralgia[J]. Magn Reson Imaging, 2018, 51: 144-150.
|
28 |
BORNHÖVD K, QUANTE M, GLAUCHE V, et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study[J]. Brain, 2002, 125(Pt 6): 1326-1336.
|
29 |
BINGEL U, LORENZ J, SCHOELL E, et al. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network[J]. Pain, 2006, 120(1/2): 8-15.
|
30 |
GUSTIN S M, WRIGLEY P J, YOUSSEF A M, et al. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury[J]. Pain, 2014, 155(5): 1027-1036.
|
31 |
CAO S, LI Y, DENG W W, et al. Local brain activity differences between herpes zoster and postherpetic neuralgia patients: a resting-state functional MRI study[J]. Pain Physician, 2017, 20(5): E687-E699.
|
32 |
CAO S, QIN B Y, ZHANG Y, et al. Herpes zoster chronification to postherpetic neuralgia induces brain activity and grey matter volume change[J]. Am J Transl Res, 2018, 10(1): 184-199.
|
33 |
梁豪文, 肖礼祖, 秋云海, 等. 带状疱疹不同阶段局部一致性脑功能磁共振对比研究[J]. 中国疼痛医学杂志, 2014, 20(10): 717-721.
|
34 |
GIESECKE T, GRACELY R H, GRANT M A, et al. Evidence of augmented central pain processing in idiopathic chronic low back pain[J]. Arthritis Rheum, 2004, 50(2): 613-623.
|
35 |
LI H, LI X Y, FENG Y, et al. Deficits in ascending and descending pain modulation pathways in patients with postherpetic neuralgia[J]. Neuroimage, 2020, 221: 117186.
|
36 |
GEHA P Y, BALIKI M N, WANG X, et al. Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia[J]. Pain, 2008, 138(3): 641-656.
|
37 |
PATEL R, DICKENSON A H. Neuronal hyperexcitability in the ventral posterior thalamus of neuropathic rats: modality selective effects of pregabalin[J]. J Neurophysiol, 2016, 116(1): 159-170.
|
38 |
DAI H, JIANG C C, WU G Z, et al. A combined DTI and resting state functional MRI study in patients with postherpetic neuralgia[J]. Jpn J Radiol, 2020, 38(5): 440-450.
|
39 |
RESTUCCIA D, DELLA MARCA G, VALERIANI M, et al. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study[J]. Brain, 2007, 130(Pt 1): 276-287.
|
40 |
LIU J Q, GU L L, HUANG Q, et al. Altered gray matter volume in patients with herpes zoster and postherpetic neuralgia[J]. J Pain Res, 2019, 12: 605-616.
|
41 |
ZHOU R, WANG J, QI W J, et al. Elevated resting state gamma oscillatory activities in electroencephalogram of patients with post-herpetic neuralgia[J]. Front Neurosci, 2018, 12: 750.
|
42 |
ZHANG Y, YU T, QIN B Y, et al. Microstructural abnormalities in gray matter of patients with postherpetic neuralgia: a diffusional kurtosis imaging study[J]. Pain Physician, 2016, 19(4): E601-E611.
|
43 |
BROOKS J C, TRACEY I. The insula: a multidimensional integration site for pain[J]. Pain, 2007, 128(1/2): 1-2.
|
44 |
MENON V, UDDIN L Q. Saliency, switching, attention and control: a network model of insula function[J]. Brain Struct Funct, 2010, 214(5/6): 655-667.
|
45 |
FERRIER J, BAYET-ROBERT M, DALMANN R, et al. Cholinergic neurotransmission in the posterior insular cortex is altered in preclinical models of neuropathic pain: key role of muscarinic M2 receptors in donepezil-induced antinociception[J]. J Neurosci, 2015, 35(50): 16418-16430.
|
46 |
WU X B, LIANG B, GAO Y J. The increase of intrinsic excitability of layer V pyramidal cells in the prelimbic medial prefrontal cortex of adult mice after peripheral inflammation[J]. Neurosci Lett, 2016, 611: 40-45.
|
47 |
CARLSSON K, ANDERSSON J, PETROVIC P, et al. Predictability modulates the affective and sensory-discriminative neural processing of pain[J]. Neuro Image, 2006, 32(4): 1804-1814.
|
48 |
OSSIPOV M H, MORIMURA K, PORRECA F. Descending pain modulation and chronification of pain[J]. Curr Opin Support Palliat Care, 2014, 8(2): 143-151.
|
49 |
SCHOENBAUM G, ROESCH M. Orbitofrontal cortex, associative learning, and expectancies[J]. Neuron, 2005, 47(5): 633-636.
|
50 |
余佳琦, 苏山春, 柯昌斌. 外侧缰核在疼痛及其相关情绪调控中的研究进展[J]. 中风与神经疾病杂志, 2023, 40(2): 174-176.
|
51 |
TIMMERMANN L, PLONER M, HAUCKE K, et al. Differential coding of pain intensity in the human primary and secondary somatosensory cortex[J]. J Neurophysiol, 2001, 86(3): 1499-1503.
|
52 |
LIN Y Y, FORSS N. Functional characterization of human second somatosensory cortex by magnetoencephalography[J]. Behav Brain Res, 2002, 135(1/2): 141-145.
|
53 |
LIU P, WANG G, LIU Y, et al. Disrupted intrinsic connectivity of the periaqueductal gray in patients with functional dyspepsia: a resting-state fMRI study[J]. Neurogastroenterol Motil, 2017, 29(8): e13060.
|
54 |
LIEBERMAN G, SHPANER M, WATTS R, et al. White matter involvement in chronic musculoskeletal pain[J]. J Pain, 2014, 15(11): 1110-1119.
|
55 |
TRACEY I. A vulnerability to chronic pain and its interrelationship with resistance to analgesia[J]. Brain, 2016, 139(Pt 7): 1869-1872.
|
56 |
GILBERTSON M W, SHENTON M E, CISZEWSKI A, et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma[J]. Nat Neurosci, 2002, 5(11): 1242-1247.
|
57 |
APKARIAN A V, SOSA Y, KRAUSS B R, et al. Chronic pain patients are impaired on an emotional decision-making task[J]. Pain, 2004, 108(1/2): 129-136.
|