[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2018, 68(6):394-424. [2] LAN P, TONOMURA N, SHIMIZU A, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation[J]. Blood, 2006, 108(2):487-492. [3] SHULTZ L D, BREHM M A, GARCIA-MARTINEZ J V,et al. Humanized mice for immune system investigation:progress, promise and challenges[J]. Nat Rev Immunol, 2012, 12(11):786-798. [4] COVASSIN L, JANGALWE S, JOUVET N, et al. Human immune system development and survival of non-obese diabetic (NOD)-scid IL2γ(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells[J]. Clin Exp Immunol, 2013, 174(3):372-388. [5] DE LA ROCHERE P, GUIL-LUNA S, DECAUDIN D, et al. Humanized mice for the study of immuno-oncology[J]. Trends Immunol, 2018, 39(9):748-763. [6] HU Z, XIA J X, FAN W, et al. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice[J]. Oncotarget, 2016, 7(6):6448-6459. [7] HU Z, VAN ROOIJEN N, YANG Y G. Macrophages prevent human red blood cell reconstitution in immunodeficient mice[J]. Blood, 2011, 118(22):5938-5946. [8] HU Z and YANG Y G. Full reconstitution of human platelets in humanized mice after macrophage depletion[J]. Blood, 2012, 120(8):1713-1716. [9] SAMAL J, KELLY S, NA-SHATAL A, et al. Human immunodeficiency virus infection induces lymphoid fibrosis in the BM-liver-thymus-spleen humanized mouse model[J]. JCI Insight, 2018, 3(18):e120430. [10] BUROVA E, HERMANN A, WAITE J, et al. Characterization of the anti-PD-1 antibody REGN2810 and its antitumor activity in human PD-1 knock-in mice[J]. Mol Cancer Ther, 2017, 16(5):861-870. [11] WANG M, YAO L C, CHENG M, et al. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy[J]. FASEB J, 2018, 32(3):1537-1549. [12] ROSATO R R, DAVILA-GONZALEZ D, CHOI D S, et al. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models[J]. Breast Cancer Res, 2018, 20(1):7-16. [13] MOSIER D E, GULIZIA R J, BAIRD S M, et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency[J]. Nature, 1988, 335(6187):256-259. [14] KING M A, COVASSIN L, BREHM M A, et al. Human peripheral blood leukocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex[J]. Clin Exp Immunol, 2009, 157(1):104-118. [15] TRAGGIAI E, CHICHA L, MAZZUCCHELLI L, et al. Development of a human adaptive immune system in cord blood cell-transplanted mice[J]. Science, 2004, 304(5667):104-107. [16] SHULTZ L D, LYONS B L, BURZENSKI L M, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells[J]. J Immunol, 2005, 174(10):6477-6489. [17] WATANABE Y, TAKAHASHI T, OKAJIMA A, et al. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice)[J]. Int Immunol, 2009, 21(7):843-858. [18] LI H J, VAN DER LEUN A M, YOFE I, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma[J]. Cell, 2019, 176(4):775-789. [19] XIA J X, HU Z, YOSHIHARA S, et al. Modeling human leukemia immunotherapy in humanized mice[J]. EBio Med, 2016, 10(1):101-108. [20] JIN C H, XIA J X, RAFIQ S, et al. Modeling anti-CD19 CAR T cell therapy in humanized mice with human immunity and autologous leukemia[J]. EBio Medicine, 2019, 39:173-181. |