[1] EBRAHIMI D, RICHARDS CM, CARPENTER MA, et al. Genetic and mechanistic basis for APOBEC3H alternative splicing, retrovirus restriction, and counteraction by HIV-1 protease[J]. Nat Commun, 2018, 9(1):4137. [2] HRECKA K, HAO CL, GIERSZEWSKA M, et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein[J]. Nature, 2011, 474(7353):658-661. [3] SONG YE, CYBURT D, LUCAS TM, et al. βTrCP is required for HIV-1 Vpu modulation of CD4, GaLV Env, and BST-2/Tetherin[J]. Viruses, 2018, 10(10):E573. [4] CHANDE A, CUCCURULLO E C, ROSA A, et al. S2 from equine infectious anemia virus is an infectivity factor which counteracts the retroviral inhibitors SERINC5 and SERINC3[J]. Proc Natl Acad Sci U S A, 2016, 113(46):13197-13202. [5] OHTOMO T, SUGAMATA Y, OZAKI Y, et al. Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells[J]. Biochem Biophys Res Commun, 1999, 258(3):583-591. [6] ISHIKAWA J, KAISHO T, TOMIZAWA H, et al. Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth[J]. Genomics, 1995, 26(3):527-534. [7] ERIKSON E, ADAM T, SCHMIDT S, et al. In vivo expression profile of the antiviral restriction factor and tumor-targeting antigen CD317/BST-2/HM1.24/tetherin in humans[J]. Proc Natl Acad Sci U S A, 2011, 108(33):13688-13693. [8] SINGH H, SAMANI D, GHATE M V, et al. Impact of cellular restriction gene (TRIM5α, BST-2) polymorphisms on the acquisition of HIV-1 and disease progression[J]. J Gene Med, 2018, 20(2/3):e3004. [9] WANG M Y, ZHANG Z Y, WANG X J. Strain-specific antagonism of the human H1N1 influenza A virus against equine tetherin[J]. Viruses, 2018, 10(5):E264. [10] HAN Z, LV M, SHI Y, et al. Mutation of glycosylation sites in BST-2 leads to its accumulation at intracellular CD63-positive vesicles without affecting its antiviral activity against multivesicular body-targeted HIV-1 and hepatitis B virus[J]. Viruses, 2016, 8(3):62. [11] FU Y X, ZHANG L, ZHANG F, et al. Exosome-mediated miR-146a transfer suppresses type I interferon response and facilitates EV71 infection[J]. PLoS Pathog, 2017, 13(9):e1006611. [12] MAHAUAD-FERNANDEZ W D, DEMALI K A, OLIVIER A K, et al. Bone marrow stromal antigen 2 expressed in cancer cells promotes mammary tumor growth and metastasis[J]. Breast Cancer Res, 2014, 16(6):493. [13] WANG W, NISHIOKA Y, OZAKI S, et al. HM1.24(CD317) is a novel target against lung cancer for immunotherapy using anti-HM1.24 antibody[J]. Cancer Immunol Immunother, 2009, 58(6):967-976. [14] FANG K H, KAO H K, CHI L M, et al. Overexpression of BST2 is associated with nodal metastasis and poorer prognosis in oral cavity cancer[J]. Laryngoscope, 2014, 124(9):E354-E360. [15] BLASIUS A L, GIURISATO E, CELLA M, et al. Bone marrow stromal cell antigen 2 is a specific marker of type Ⅰ IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation[J]. J Immunol, 2006, 177(5):3260-3265. [16] HINZ A, MIGUET N, NATRAJAN G, et al. Structural basis of HIV-1 tethering to membranes by the BST-2/tetherin ectodomain[J]. Cell Host Microbe, 2010, 7(4):314-323. [17] SCHUBERT H.L, ZHAI Q T, SANDRIN V, et al. Structural and functional studies on the extracellular domain of BST2/tetherin in reduced and oxidized conformations[J]. Proc Natl Acad Sci U S A, 2010, 107(42):17951-17956. [18] SWIECKI M, SCHEAFFER S M, ALLAIRE M, et al. Structural and biophysical analysis of BST-2/tetherin ectodomains reveals an evolutionary conserved design to inhibit virus release[J]. J Biol Chem, 2011, 286(4):2987-2997. [19] ROLLASON R, KOROLCHUK V, HAMILTON C, et al. Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif[J]. J Cell Sci, 2007, 120(Pt 21):3850-3858. [20] MATSUDA A, SUZUKI Y, HONDA G, et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways[J]. Oncogene, 2003, 22(21):3307-3318. [21] DUFRASNE F.E, LUCCHETTI M, MARTIN A, et al. Modulation of the NF-κB signaling pathway by the HIV-2 envelope glycoprotein and its incomplete BST-2 antagonism[J]. Virology, 2018, 513:11-16. [22] MUKAI S, OUE N, OSHIMA T, et al. Overexpression of transmembrane protein BST2 is associated with poor survival of patients with esophageal, gastric, or colorectal cancer[J]. Ann Surg Oncol, 2017, 24(2):594-602. [23] SAYEED A, LUCIANI-TORRES G, MENG Z, et al. Aberrant regulation of the BST2(Tetherin) promoter enhances cell proliferation and apoptosis evasion in high grade breast cancer cells[J]. PLoS One, 2013, 8(6):e67191. [24] MAHAUAD-FERNANDEZ W D, OKEOMA C M. Cysteine-linked dimerization of BST-2 confers anoikis resistance to breast cancer cells by negating proapoptotic activities to promote tumor cell survival and growth[J]. Cell Death Dis, 2017, 8(3):e2687. [25] NAUSHAD W, MAHAUAD-FERNANDEZ W D, OKEOMA C M. Structural determinant of BST-2-mediated regulation of breast cancer cell motility:A role for cytoplasmic tail tyrosine residues[J]. Oncotarget, 2017, 8(66):110221-110233. [26] THAM T. Human papillomavirus and world health organization type Ⅲ nasopharyngeal carcinoma:Multicenter study from an endemic area in Southern China[J]. Cancer, 2019,125(1):161. [27] CHIANG S F, KAN C Y, HSIAO Y C, et al. Bone marrow stromal antigen 2 is a novel plasma biomarker and prognosticator for colorectal carcinoma:A secretome-based verification study[J]. Dis Markers, 2015, 2015:874054. [28] PEGTEL D M, SUBRAMANIAN A, MERITT D, et al. IFN-alpha-stimulated genes and Epstein-Barr virus gene expression distinguish WHO type Ⅱ and Ⅲ nasopharyngeal carcinomas[J]. Cancer Res, 2007, 67(2):474-481. [29] MERCIECA S, BELDERBOS J S A, VAN BAARDWIJK A, et al. The impact of training and professional collaboration on the interobserver variation of lung cancer delineations:a multi-institutional study[J]. Acta Oncol, 2019,58(2):200-208. [30] YU H L, WANG Y H, WANG S S, et al. Paclitaxel-loaded core-shell magnetic nanoparticles and cold atmospheric plasma inhibit non-small cell lung cancer growth[J]. ACS Appl Mater Interfaces, 2018,10(50):43462-43471. [31] BECKER M, SOMMER A, KRÁTZSCHMAR J R, et al. Distinct gene expression patterns in a Tamoxifen-sensitive human mammary carcinoma xenograft and its Tamoxifen-resistant subline MaCa 3366/TAM[J]. Mol Cancer Ther, 2005, 4(1):151-168. [32] HOTTER D, SAUTER D, KIRCHHOFF F. Emerging role of the host restriction factor tetherin in viral immune sensing[J]. J Mol Biol, 2013, 425(24):4956-4964. [33] IKUSHIMA H, MIYAZONO K. TGFbeta signalling:a complex web in cancer progression[J]. Nat Rev Cancer, 2010, 10(6):415-424. [34] MAHAUAD-FERNANDEZ W D, BORCHERDING N C, ZHANG W Z, et al. Bone marrow stromal antigen 2(BST-2) DNA is demethylated in breast tumors and breast cancer cells[J]. PLoS One, 2015, 10(4):e0123931. [35] WANG J C, BIAN S, LIU M C, et al. Cloning, identification, and functional analysis of bone marrow stromal cell antigen-2 from sika deer (Cervus nippon)[J]. Gene, 2018, 661:133-138. [36] WU Y S, LEE Z Y, CHUAH L H, et al. Epigenetics in metastatic breast cancer:its regulation and implications in diagnosis, prognosis and therapeutics[J]. Curr Cancer Drug Targets, 2019,19(2):82-100. [37] ROMAGNOLO D F, DANIELS K D, Grunwald J T, et al. Epigenetics of breast cancer:Modifying role of environmental and bioactive food compounds[J]. Mol Nutr Food Res, 2016, 60(6):1310-1329. [38] HERMAN J G, BAYLIN S B. Gene silencing in cancer in association with promoter hypermethylation[J]. N Engl J Med, 2003, 349(21):2042-2054. [39] EHRLICH M. DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements[J]. J Nutr, 2002, 132(8 Suppl):2424S-2429S. [40] MAHAUAD-FERNANDEZ W D, OKEOMA C M. B49, a BST-2-based peptide, inhibits adhesion and growth of breast cancer cells[J]. Sci Rep, 2018, 8(1):4305. [41] SAYEED A, MENG Z, LUCIANI G, et al. Negative regulation of UCP2 by TGFβ signaling characterizes low and intermediate-grade primary breast cancer[J]. Cell Death Dis, 2010, 1:e53. [42] WANG D, KANUMA T, MIZUNUMA H, et al. Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer[J]. Cancer Res, 2000, 60(16):4507-4512. [43] WEI D Y, LE X D, ZHENG L Z, et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis[J]. Oncogene, 2003, 22(3):319-329. [44] XIE T X, HUANG F J, ALDAPE K D, et al. Activation of stat3 in human melanoma promotes brain metastasis[J]. Cancer Res, 2006, 66(6):3188-3196. [45] CAI D Q, CAO J, LI Z, et al. Up-regulation of bone marrow stromal protein 2(BST2) in breast cancer with bone metastasis[J]. BMC Cancer, 2009, 9:102. [46] GALÃO R P, LE TORTOREC A, PICKERING S, et al. Innate sensing of HIV-1 assembly by Tetherin induces NFκB-dependent proinflammatory responses[J]. Cell Host Microbe, 2012, 12(5):633-644. |