1 |
SAVANI R C. Modulators of inflammation in bronchopulmonary dysplasia[J]. Semin Perinatol, 2018, 42(7): 459-470.
|
2 |
BERKELHAMER S K, MESTAN K K, STEINHORN R. An update on the diagnosis and management of bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension[J]. Semin Perinatol, 2018, 42(7): 432-443.
|
3 |
IBRAHIM J, BHANDARI V. The definition of bronchopulmonary dysplasia: an evolving dilemma[J]. Pediatr Res, 2018, 84(5): 586-588.
|
4 |
HWANG J S, REHAN V K. Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment[J]. Lung, 2018, 196(2): 129-138.
|
5 |
PARKER R A, LINDSTROM D P, COTTON R B. Evidence from twin study implies possible genetic susceptibility to bronchopulmonary dysplasia[J]. Semin Perinatol, 1996, 20(3): 206-209.
|
6 |
RONKAINEN E, PERHOMAA M, MATTILA L,et al.Structural pulmonary abnormalities still evident in schoolchildren with new bronchopulmonary dysplasia[J]. Neonatology, 2018, 113(2): 122-130.
|
7 |
KATO M, NATARAJAN R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory[J]. Nat Rev Nephrol, 2019, 15(6): 327-345.
|
8 |
WU R, WANG L, YIN R, et al. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer[J]. Mol Carcinog, 2020, 59(2): 227-236.
|
9 |
CASTRO-SANTOS P, DÍAZ-PEÑA R. Genomics and epigenomics in rheumatic diseases: what do they provide in terms of diagnosis and disease management?[J]. Clin Rheumatol, 2017, 36(9): 1935-1947.
|
10 |
AGUDELO GARCIA P A, HOOVER M E, ZHANG P,et al. Identification of multiple roles for histone acetyltransferase 1 in replication-coupled chromatin assembly[J]. Nucleic Acids Res, 2017, 45(16): 9319-9335.
|
11 |
MAHMOUD A M, ALI M M. Methyl donor micronutrients that modify DNA methylation and cancer outcome[J]. Nutrients,2019,11(3):608.
|
12 |
YANG X W, WONG M P M, NG R K. Aberrant DNA methylation in acute myeloid leukemia and its clinical implications[J]. Int J Mol Sci, 2019, 20(18): 4576.
|
13 |
GINDER G D, WILLIAMS D C. Readers of DNA methylation, the MBD family as potential therapeutic targets[J]. Pharmacol Ther, 2018, 184: 98-111.
|
14 |
ZHU Y, FU J, YANG H, et al. Hyperoxia-induced methylation decreases RUNX3 in a newborn rat model of bronchopulmonary dysplasia[J]. Respir Res, 2015, 16: 75.
|
15 |
CUNA A, HALLORAN B, FAYE-PETERSEN O, et al. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation[J]. Am J Respir Cell Mol Biol, 2015, 53(1): 60-73.
|
16 |
ZHU L, LI H, TANG J, et al. Hyperoxia arrests alveolar development through suppression of histone deacetylases in neonatal rats[J]. Pediatr Pulmonol, 2012, 47(3): 264-274.
|
17 |
ROBBINS M E, DAKHLALLAH D, MARSH C B, et al. Of mice and men: correlations between microRNA-17-92 cluster expression and promoter methylation in severe bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(5): L981-L984.
|
18 |
CHEN C M, LIU Y C, CHEN Y J, et al. Genome-wide analysis of DNA methylation in hyperoxia-exposed newborn rat lung[J]. Lung, 2017, 195(5): 661-669.
|
19 |
BIK-MULTANOWSKI M, REVHAUG C, GRABOWSKA A, et al. Hyperoxia induces epigenetic changes in newborn mice lungs[J]. Free Radic Biol Med, 2018, 121: 51-56.
|
20 |
REVHAUG C, BIK-MULTANOWSKI M, ZASADA M,et al. Immune system regulation affected by a murine experimental model of bronchopulmonary dysplasia: genomic and epigenetic findings[J]. Neonatology, 2019, 116(3): 269-277.
|
21 |
CHENG H R, HE S R, WU B Q, et al. Deep Illumina sequencing reveals differential expression of long non-coding RNAs in hyperoxia induced bronchopulmonary dysplasia in a rat model[J]. Am J Transl Res, 2017, 9(12): 5696-5707.
|
22 |
SIDOLI S, TREFELY S, GARCIA B A, et al. Integrated analysis of acetyl-CoA and histone modification via mass spectrometry to investigate metabolically driven acetylation[J]. Methods Mol Biol, 2019, 1928: 125-147.
|
23 |
KIM J E. Bookmarking by histone methylation ensures chromosomal integrity during mitosis[J]. Arch Pharm Res, 2019, 42(6): 466-480.
|
24 |
LIN Y M, LI Y, ZHU X T,et al.Genetic contexts characterize dynamic histone modification patterns among cell types[J].Interdiscip Sci, 2019, 11(4):698-710.
|
25 |
ORENAY-BOYACIOGLU S, KASAP E, GERCEKER E, et al. Expression profiles of histone modification genes in gastric cancer progression[J]. Mol Biol Rep, 2018, 45(6): 2275-2282.
|
26 |
DASKALAKI M G, TSATSANIS C, KAMPRANIS S C. Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses[J]. J Cell Physiol, 2018, 233(9): 6495-6507.
|
27 |
CHAO C M, BRUCK RVAN DEN, LORK S, et al. Neonatal exposure to hyperoxia leads to persistent disturbances in pulmonary histone signatures associated with NOS3 and STAT3 in a mouse model[J]. Clin Epigenetics, 2018, 10: 37.
|
28 |
COHEN J, JVAN MARTER L, SUN Y, et al. Perturbation of gene expression of the chromatin remodeling pathway in premature newborns at risk for bronchopulmonary dysplasia[J]. Genome Biol, 2007, 8(10): R210.
|
29 |
LONDHE V A, SUNDAR I K, LOPEZ B, et al. Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung[J]. Pediatr Res, 2011, 69(5 Pt 1): 371-377.
|
30 |
NI W, LIN N, HE H, et al. Lipopolysaccharide induces up-regulation of TGF-α through HDAC2 in a rat model of bronchopulmonary dysplasia[J]. PLoS One, 2014, 9(3): e91083.
|
31 |
MODY K, SASLOW J G, KATHIRAVAN S, et al. Sirtuin1 in tracheal aspirate leukocytes: possible role in the development of bronchopulmonary dysplasia in premature infants[J]. J Matern Fetal Neonatal Med, 2012, 25(8): 1483-1487.
|
32 |
MENDEN H, XIA S, MABRY S M, et al. Histone deacetylase 6 regulates endothelial MyD88-dependent canonical TLR signaling, lung inflammation, and alveolar remodeling in the developing lung[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 317(3): L332-L346.
|
33 |
YU X H, WANG H F, WU J B, et al. Non-coding RNAs derailed: The many influences on the fatty acid reprogramming of cancer[J]. Life Sci, 2019, 231: 116509.
|
34 |
PANIR K, SCHJENKEN J E, ROBERTSON S A,et al.Non-coding RNAs in endometriosis: a narrative review[J]. Hum Reprod Update, 2018,24(4): 497-515.
|
35 |
LU T X, ROTHENBERG M E. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141(4): 1202-1207.
|
36 |
PIEDADE D, AZEVEDO-PEREIRA J M. MicroRNAs as important players in host-adenovirus interactions[J]. Front Microbiol, 2017, 8: 1324.
|
37 |
DURRANI-KOLARIK S, POOL C A, GRAY A, et al. miR-29b supplementation decreases expression of matrix proteins and improves alveolarization in mice exposed to maternal inflammation and neonatal hyperoxia[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(2): L339-L349.
|
38 |
AMEIS D, KHOSHGOO N, IWASIOW B M, et al. MicroRNAs in lung development and disease[J]. Paediatr Respir Rev, 2017, 22: 38-43.
|
39 |
XING Y, FU J, YANG H, et al. MicroRNA expression profiles and target prediction in neonatal Wistar rat lungs during the development of bronchopulmonary dysplasia[J]. Int J Mol Med, 2015, 36(5): 1253-1263.
|
40 |
LAL C V, OLAVE N, TRAVERS C, et al. Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants[J]. JCI Insight,2018,3(5):e93994.
|
41 |
SUN Y F, MA L, GONG X H, et al. Expression of microRNA-495-5p in preterm infants with bronchopulmonary dysplasia:a bioinformatics analysis[J].Chin J Contemp Pediatr,2020,22(1): 24-30.
|
42 |
WANG J, YIN J, WANG X, et al. Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model[J]. J Cell Biochem, 2019, 120(6): 9369-9380.
|
43 |
ZHANG Y, COARFA C, DONG X, et al. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(1): L144-L156.
|
44 |
SYED M, DAS P, PAWAR A, et al. Hyperoxia causes miR-34a-mediated injury via angiopoietin-1 in neonatal lungs[J]. Nat Commun, 2017, 8(1): 1173.
|
45 |
YUAN H S, XIONG D Q, HUANG F, et al. MicroRNA-421 inhibition alleviates bronchopulmonary dysplasia in a mouse model via targeting Fgf10[J]. J Cell Biochem, 2019, 120(10): 16876-16887.
|
46 |
KOPP F, MENDELL J T. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393-407.
|
47 |
QIAN X Y, ZHAO J Y, YEUNG P Y, et al. Revealing lncRNA structures and interactions by sequencing-based approaches[J]. Trends Biochem Sci, 2019, 44(1): 33-52.
|
48 |
CHARLES RICHARD J L, EICHHORN P J A. Platforms for investigating LncRNA functions[J]. SLAS Technol,2018, 23(6): 493-506.
|
49 |
CAI C, QIU J J, QIU G, et al. Long non-coding RNA MALAT1 protects preterm infants with bronchopulmonary dysplasia by inhibiting cell apoptosis[J]. BMC Pulm Med, 2017, 17(1): 1-8.
|
50 |
张 艳, 包天平, 宋晓彤, 等. 长链非编码RNA_AK096792作为早产儿支气管肺发育不良早期诊断的脐带血清标志物研究[J]. 中华实用儿科临床杂志, 2018, 33(14): 1075-1078.
|
51 |
BAO T P, WU R, CHENG H P, et al. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia[J]. Cell Biochem Funct, 2016, 34(5): 299-309.
|
52 |
包天平, 田兆方, 赵 赛, 等. 长链非编码RNA1010001N08Rik在支气管肺发育不良形成中的表达规律及生物信息学分析[J]. 中华新生儿科杂志(中英文), 2017, 32(5): 384-388.
|