Journal of Jilin University(Medicine Edition) ›› 2023, Vol. 49 ›› Issue (6): 1669-1676.doi: 10.13481/j.1671-587X.20230636
• Review • Previous Articles Next Articles
Received:
2022-09-08
Online:
2023-11-28
Published:
2023-12-22
CLC Number:
1 | LIBBY P. The changing landscape of atherosclerosis[J]. Nature, 2021, 592(7855): 524-533. |
2 | POTHINENI N V K, SUBRAMANY S, KURIAKOSE K, et al. Infections, atherosclerosis, and coronary heart disease[J]. Eur Heart J, 2017, 38(43): 3195-3201. |
3 | MENTAL DISORDERS COLLABORATORSGBD. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet Psychiatry, 2022, 9(2):137-150. |
4 | DAWSON P A. Impact of inhibiting ileal apical versus basolateral bile acid transport on cholesterol metabolism and atherosclerosis in mice[J]. Dig Dis, 2015, 33(3): 382-387. |
5 | SHENG W, JI G, ZHANG L. The effect of lithocholic acid on the gut-liver axis[J]. Front Pharmacol, 2022, 13: 910493. |
6 | BRANDL K, KUMAR V, ECKMANN L. Gut-liver axis at the frontier of host-microbial interactions[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312(5): G413-G419. |
7 | KATSIKI N, MANTZOROS C, MIKHAILIDIS D P. Adiponectin, lipids and atherosclerosis[J]. Curr Opin Lipidol, 2017, 28(4): 347-354. |
8 | ALFADDAGH A, MARTIN S S, LEUCKER T M,et al.Inflammation and cardiovascular disease: from mechanisms to therapeutics[J]. Am J Prev Cardiol, 2020, 4: 100130. |
9 | LAURSEN I H, BANASIK K, HAUE A D, et al. Cohort profile: Copenhagen Hospital Biobank-Cardiovascular Disease Cohort (CHB-CVDC): construction of a large-scale genetic cohort to facilitate a better understanding of heart diseases[J]. BMJ Open, 2021, 11(12): e049709. |
10 | XU S W, KAMATO D, LITTLE P J, et al. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics[J]. Pharmacol Ther, 2019, 196: 15-43. |
11 | GENG S, CHEN K Q, YUAN R X, et al. The persistence of low-grade inflammatory monocytes contributes to aggravated atherosclerosis[J]. Nat Commun, 2016, 7: 13436. |
12 | MIYAKE Y, YAMAMOTO K. Role of gut microbiota in liver diseases[J]. Hepatol Res,2013, 43(2): 139-146. |
13 | WANG Z W, GUO X P, ZHANG Q, et al. Elimination of Ox-LDL through the liver inhibits advanced atherosclerotic plaque progression[J]. Int J Med Sci, 2021, 18(16): 3652-3664. |
14 | WANG X M, YANG Y H, HUYCKE M M. Risks associated with enterococci as probiotics[J]. Food Res Int, 2020, 129: 108788. |
15 | TRIPATHI A, DEBELIUS J, BRENNER D A, et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 397-411. |
16 | LENG J, TIAN H J, FANG Y, et al. Amelioration of non-alcoholic steatohepatitis by Atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide combination is associated with reducing endotoxin gut leakage[J]. Front Cell Infect Microbiol, 2022, 12: 827516. |
17 | PANDAK W M, KAKIYAMA G. The acidic pathway of bile acid synthesis: not just an alternative pathway[J]. Liver Res, 2019, 3(2): 88-98. |
18 | FATTORUSSO A, DI GENOVA L, DELL’ISOLA G B, et al. Autism spectrum disorders and the gut microbiota[J]. Nutrients, 2019, 11(3): 521. |
19 | JIE Z Y, XIA H H, ZHONG S L, et al. The gut microbiome in atherosclerotic cardiovascular disease[J]. Nat Commun, 2017, 8(1): 845. |
20 | ZHANG S T, TIAN J, LEI M, et al. Association between dietary fiber intake and atherosclerotic cardiovascular disease risk in adults: a cross-sectional study of 14, 947 population based on the National Health and Nutrition Examination Surveys[J]. BMC Public Health, 2022, 22(1): 1076. |
21 | DU Y, LI X X, SU C Y, et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice[J]. Br J Pharmacol, 2020, 177(8): 1754-1772. |
22 | ZOU F G, QIU Y, HUANG Y L, et al. Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function[J]. Cell Death Dis, 2021, 12(6): 582. |
23 | MAZZAWI T. Gut microbiota manipulation in irritable bowel syndrome[J].Microorganisms,2022,10(7): 1332. |
24 | XU J, YANG Y J. Implications of gut microbiome on coronary artery disease[J]. Cardiovasc Diagn Ther, 2020, 10(4): 869-880. |
25 | SANCHEZ-GIMENEZ R, AHMED-KHODJA W, MOLINA Y, et al. Gut microbiota-derived metabolites and cardiovascular disease risk: a systematic review of prospective cohort studies[J]. Nutrients, 2022, 14(13): 2654. |
26 | TAN Y, ZHOU J Y, LIU C, et al. Association between plasma trimethylamine N-oxide and neoatherosclerosis in patients with very late stent thrombosis[J]. Can J Cardiol, 2020, 36(8): 1252-1260. |
27 | MOHAMMADI A, VAHABZADEH Z, JAMALZADEH S, et al. Trimethylamine-N-oxide, as a risk factor for atherosclerosis, induces stress in J774A.1 murine macrophages[J]. Adv Med Sci, 2018, 63(1): 57-63. |
28 | WITKOWSKI M, WEEKS T L, HAZEN S L. Gut microbiota and cardiovascular disease[J]. Circ Res, 2020, 127(4): 553-570. |
29 | LIU H C, ZHU H J, XIA H, et al. Different effects of high-fat diets rich in different oils on lipids metabolism, oxidative stress and gut microbiota[J]. Food Res Int, 2021, 141: 110078. |
30 | DE AGUIAR VALLIM T Q, TARLING E J, EDWARDS P A. Pleiotropic roles of bile acids in metabolism[J]. Cell Metab, 2013, 17(5): 657-669. |
31 | RAMÍREZ-PÉREZ O, CRUZ-RAMÓN V, CHINCHILLA-LÓPEZ P, et al. The role of the gut microbiota in bile acid metabolism[J]. Ann Hepatol, 2017, 16(1): s15-s20. |
32 | YANG J Y, ZHANG T T, YU Z L, et al. Taurine alleviates trimethylamine N-oxide-induced atherosclerosis by regulating bile acid metabolism in ApoE-/- mice[J]. J Agric Food Chem,2022, 70(18): 5738-5747. |
33 | ZURKINDEN L, SVIRIDOV D, VOGT B, et al. Downregulation of Cyp7a1 by cholic acid and chenodeoxycholic acid in Cyp27a1/ApoE double knockout mice: differential cardiovascular outcome[J]. Front Endocrinol (Lausanne), 2020, 11: 586980. |
34 | BUSTOS A Y, FONT DE VALDEZ G, FADDA S, et al. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health[J]. Food Res Int, 2018, 112: 250-262. |
35 | DEVKOTA S, WANG Y W, MUSCH M W, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in IL-10-/- mice[J]. Nature, 2012, 487(7405): 104-108. |
36 | ISLAM K B, FUKIYA S, HAGIO M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats[J]. Gastroenterology, 2011, 141(5): 1773-1781. |
37 | GUAN B Y, TONG J L, HAO H P, et al. Bile acid coordinates microbiota homeostasis and systemic immunometabolism in cardiometabolic diseases[J]. Acta Pharm Sin B, 2022, 12(5): 2129-2149. |
38 | CHIANG J Y L, FERRELL J M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-G573. |
39 | HALKIAS C, DARBY W G, FELTIS B N, et al. Marine bile natural products as agonists of the TGR5 receptor[J]. J Nat Prod, 2021, 84(5): 1507-1514. |
40 | MEMBERS A F, COMMITTEE FOR PRACTICE GUIDELINES CPG) E S C, NATIONAL CARDIAC SOCIETIES E C.2019 ESC/EAS guidelines for the management of dyslipidaemias:Lipid modification to reduce cardiovascular risk[J]. Atherosclerosis, 2019, 290: 140-205. |
41 | LEE J J, CHI G, FITZGERALD C, et al. Cholesterol efflux capacity and its association with adverse cardiovascular events: a systematic review and meta-analysis[J]. Front Cardiovasc Med, 2021, 8: 774418. |
42 | GRÜNER N, MATTNER J. Bile acids and microbiota: multifaceted and versatile regulators of the liver-gut axis[J]. Int J Mol Sci, 2021, 22(3): 1397. |
43 | LAM V, SU J D, KOPROWSKI S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26(4): 1727-1735. |
44 | MATSUO M.ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis[J].J Pharmacol Sci,2022,148(2):197-203. |
45 | ROCHA V Z, FOLCO E J, SUKHOVA G, et al. Interferon-gamma,a Th1 cytokine,regulates fat inflammation: a role for adaptive immunity in obesity[J]. Circ Res, 2008, 103(5): 467-476. |
46 | LI H Z, WANG Q, ZHANG Y Y, et al. Onset of coronary heart disease is associated with HCMV infection and increased CD14 +CD16 + monocytes in a population of Weifang, China[J]. Biomed Environ Sci, 2020, 33(8): 573-582. |
47 | TAN Y Y, YUE S R, LU A P, et al. The improvement of nonalcoholic steatohepatitis by Poria Cocos polysaccharides associated with gut microbiota and NF-κB/CCL3/CCR1 axis[J]. Phytomedicine, 2022, 103: 154208. |
48 | AZUMA R W, KADOWAKI T, EL-SAED A, et al. Associations of D-dimer and von Willebrand factor with atherosclerosis in Japanese and white men[J]. Acta Cardiol, 2010, 65(4): 449-456. |
49 | ALLAN R B, DELANEY C L, MILLER M D, et al. A comparison of flow-mediated dilatation and peripheral artery tonometry for measurement of endothelial function in healthy individuals and patients with peripheral arterial disease[J]. Eur J Vasc Endovasc Surg, 2013, 45(3): 263-269. |
50 | YAMASHITA T, KASAHARA K, EMOTO T,et al. Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases[J]. Circ J, 2015, 79(9): 1882-1890. |
51 | LIU Z Q, SUN X, LIU Z B, et al. Phytochemicals in traditional Chinese medicine can treat gout by regulating intestinal flora through inactivating NLRP3 and inhibiting XOD activity[J]. J Pharm Pharmacol. 2022, 74(7): 919-929. |
52 | BLEVINS H M, XU Y M, BIBY S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022, 14: 879021. |
53 | SONG Y J, ZHAO Y G, MA Y M, et al. Biological functions of NLRP3 inflammasome: a therapeutic target in inflammatory bowel disease[J]. Cytokine Growth Factor Rev, 2021, 60: 61-75. |
54 | LI X H, LIU L Z, CHEN L, et al. Aerobic exercise regulates FGF21 and NLRP3 inflammasome-mediated pyroptosis and inhibits atherosclerosis in mice[J]. PLoS One, 2022, 17(8): e0273527. |
55 | O’CONNOR K D, BROPHY T, FONAROW G C,et al. Testing for coronary artery disease in older patients with new-onset heart failure: findings from get with the guidelines-heart failure[J].Circ Heart Fail,2020,13(4): e006963. |
56 | LI W, LUO J C, PENG F D, et al. Spatial metabolomics identifies lipid profiles of human carotid atherosclerosis[J]. Atherosclerosis, 2023, 364: 20-28. |
57 | CHEN R, CHEN T, ZHOU Z H, et al. Integrated pyroptosis measurement and metabolomics to elucidate the effect and mechanism of tangzhiqing on atherosclerosis[J].Front Physiol, 2022,13: 937737. |
58 | WANG Y T, SUN X, QIU J W, et al. A UHPLC-Q-TOF-MS-based serum and urine metabolomics approach reveals the mechanism of Gualou-Xiebai herb pair intervention against atherosclerosis process in ApoE-/- mice[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2023, 1215: 123567. |
59 | 郁 晨. 基于“肝-肠”轴探讨冠心宁片抗西藏小型猪AS的作用及机制[D]. 杭州: 浙江中医药大学, 2020. |
60 | 段盈竹, 张 欢, 于 游, 等. 基于“木郁土壅”理论从“肝-肠轴学说”探析越鞠丸防治动脉粥样硬化的机制[J]. 中华中医药学刊, 2022, 40(10): 99-102. |
[1] | Meng QU,Shiya WENG,Hong ZHENG,Yan LI,Runze GAO,Shenggao WANG,Chunyan YU,Boxue CHEN,Zhiheng DONG. Protective effect of fermented red ginseng total saponins on rat myocardial interstitial fibroblasts cultured with high glucose and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2021, 47(5): 1201-1208. |
[2] | ZHAO Miao, WANG Yi, ZHANG Ying, FENG Yumei, CAO Yawen, JIANG Haisen, LI Wei. Improvement effect of curcumin on cognitive function in mice with sleep deprivation and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2019, 45(06): 1373-1378. |
[3] | WANG Su-xia,QIN Ling,TANG Yuan,WU Hai-di,LIN Shu-mei,XU Guo-liang. Meta-analysis on effectiveness and safety of zaleplon compared with zopiclone in treatment of insomnia [J]. Journal of Jilin University Medicine Edition, 2013, 39(1): 104-108. |
|