| [1] |
SCHMID P, ABRAHAM J, CHAN S, et al. Capivasertib plus paclitaxel versus placebo plus paclitaxel As first-line therapy for metastatic triple-negative breast cancer: the PAKT trial[J]. J Clin Oncol, 2020, 38(5): 423-433.
|
| [2] |
MOURA M, CONDE C. Phosphatases in mitosis: roles and regulation[J]. Biomolecules, 2019, 9(2): 55.
|
| [3] |
GUZMAN F, FAZELI Y, KHUU M, et al. Retinoblastoma tumor suppressor protein roles in epigenetic regulation[J]. Cancers (Basel), 2020, 12(10): 2807.
|
| [4] |
FELGUEIRAS J, JERÓNIMO C, FARDILHA M. Protein phosphatase 1 in tumorigenesis: is it worth a closer look?[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188433.
|
| [5] |
LIU Y S, CHANG Y C, KUO W W, et al. Inhibition of protein phosphatase 1 stimulates noncanonical ER stress eIF2α activation to enhance fisetin-induced chemosensitivity in HDAC inhibitor-resistant hepatocellular carcinoma cells[J]. Cancers (Basel), 2019, 11(7): 918.
|
| [6] |
JIAN Y T, KONG L Z, XU H Y, et al. Protein phosphatase 1 regulatory inhibitor subunit 14C promotes triple-negative breast cancer progression via sustaining inactive glycogen synthase kinase 3 beta[J]. Clin Transl Med, 2022, 12(1): e725.
|
| [7] |
CHEN S P, YANG M, YANG H K, et al. Identification and validation of a 9-gene signature for the prognosis of ovarian cancer by integrated bioinformatical analysis[J]. Ann Transl Med, 2022, 10(19): 1059.
|
| [8] |
XU H K, MAO J Y, YANG X D, et al. AMP-activated protein kinase family member 5 is an independent prognostic indicator of pancreatic adenocarcinoma: a study based on The Cancer Genome Atlas[J]. Mol Med Rep, 2020, 22(5): 4329-4339.
|
| [9] |
YANG L J, GAO L, GUO Y N, et al. Upregulation of microRNA miR-141-3p and its prospective targets in endometrial carcinoma: a comprehensive study[J]. Bioengineered, 2021, 12(1): 2941-2956.
|
| [10] |
ZOU Z H, LIU R, LIANG Y K, et al. Identification and validation of a PPP1R12A-related five-gene signature associated with metabolism to predict the prognosis of patients with prostate cancer[J]. Front Genet, 2021, 12: 703210.
|
| [11] |
DI FIORE R, D’ANNEO A, TESORIERE G, et al. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis[J]. J Cell Physiol, 2013, 228(8): 1676-1687.
|
| [12] |
FERREIRA M, BEULLENS M, BOLLEN M, et al. Functions and therapeutic potential of protein phosphatase 1: Insights from mouse genetics[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(1): 16-30.
|
| [13] |
TERRAK M, KERFF F, LANGSETMO K, et al. Structural basis of protein phosphatase 1 regulation[J]. Nature, 2004, 429(6993): 780-784.
|
| [14] |
MARTIN S G, ZHANG S W, YANG S, et al. Dopamine and cAMP-regulated phosphoprotein 32kDa (DARPP-32), protein phosphatase-1 and cyclin-dependent kinase 5 expression in ovarian cancer[J]. J Cell Mol Med, 2020, 24(16): 9165-9175.
|
| [15] |
OHKURA H, YANAGIDA M. S. Pombe gene sds22+ essential for a midmitotic transition encodes a leucine-rich repeat protein that positively modulates protein phosphatase-1[J]. Cell, 1991, 64(1): 149-157.
|
| [16] |
JIANG Y, SCOTT K L, KWAK S J, et al. Sds22/PP1 links epithelial integrity and tumor suppression via regulation of myosin Ⅱ and JNK signaling[J]. Oncogene, 2011, 30(29): 3248-3260.
|
| [17] |
PAUL D, BARGALE A B, RAPOLE S, et al. Protein phosphatase 1 regulatory subunit SDS22 inhibits breast cancer cell tumorigenesis by functioning as a negative regulator of the AKT signaling pathway[J]. Neoplasia, 2019, 21(1): 30-40.
|
| [18] |
SAINI K S, LOI S, DE AZAMBUJA E, et al. Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer[J]. Cancer Treat Rev, 2013, 39(8): 935-946.
|
| [19] |
LIAO L, ZHANG Y L, DENG L, et al. Protein phosphatase 1 subunit PPP1R14B stabilizes STMN1 to promote progression and paclitaxel resistance in triple-negative breast cancer[J]. Cancer Res, 2023, 83(3): 471-484.
|
| [20] |
HORVÁTH D, TAMÁS I, SIPOS A, et al. Correction: Myosin phosphatase and RhoA-activated kinase modulate neurotransmitter release by regulating SNAP-25 of SNARE complex[J]. PLoS One, 2017, 12(6): e0179296.
|
| [21] |
李 菁, 彭 生, 翁 浩. 经皮自控电刺激耳神门穴对乳腺癌术后疼痛及恶心、呕吐的影响[J]. 同济大学学报(医学版), 2024, 45(1): 100-105.
|
| [22] |
SUN H Z, OU B C, ZHAO S L, et al. USP11 promotes growth and metastasis of colorectal cancer via PPP1CA-mediated activation of ERK/MAPK signaling pathway[J]. EBioMedicine, 2019, 48: 236-247.
|
| [23] |
KOTECHA S, LEBOT M N, SUKKARN B, et al. Dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP-32) and survival in breast cancer: a retrospective analysis of protein and mRNA expression[J]. Sci Rep, 2019, 9: 16987.
|
| [24] |
ZHANG Y X, ZHEN F, SUN Y, et al. Single-cell RNA sequencing reveals small extracellular vesicles derived from malignant cells that contribute to angiogenesis in human breast cancers[J]. J Transl Med, 2023, 21(1): 570.
|
| [25] |
BEAVER C M, AHMED A, MASTERS J R. Clonogenicity: holoclones and meroclones contain stem cells[J]. PLoS One, 2014, 9(2): e89834.
|
| [26] |
VERDUGO-SIVIANES E M, CARNERO A. SPINOPHILIN: a multiplayer tumor suppressor[J]. Genes Dis, 2022, 10(1): 187-198.
|
| [27] |
ZHANG W, SHANG S, YANG Y Y, et al. Identification of DNA methylation-driven genes by integrative analysis of DNA methylation and transcriptome data in pancreatic adenocarcinoma[J]. Exp Ther Med, 2020, 19(4): 2963-2972.
|
| [28] |
DANG M, ARMBRUSTER N, MILLER M A, et al. Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways[J]. Proc Natl Acad Sci USA, 2013, 110(24): 9776-9781.
|
| [29] |
CAO H J, WANG Z Q, WANG Y, et al. PPP1R14D promotes the proliferation, migration and invasion of lung adenocarcinoma via the PKCα/BRAF/MEK/ERK signaling pathway[J]. Int J Oncol, 2022, 61(6): 153.
|
| [30] |
BOLLEN M, PETI W, RAGUSA M J, et al. The extended PP1 toolkit: designed to create specificity[J]. Trends Biochem Sci, 2010, 35(8): 450-458.
|
| [31] |
ZHUO X L, CHEN L, LAI Z W, et al. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) correlates with poor prognosis and immune infiltration in lung adenocarcinoma[J]. Bioengineered, 2021, 12(1): 8336-8346.
|
| [32] |
ZHOU N N, LUO P, WEN Y, et al. Immune cell infiltration is a strong prognostic indicator in surgical resection of SCLC[J]. J Thorac Oncol, 2019, 14(10): e242-e243.
|
| [33] |
BARRA F, EVANGELISTI G, FERRO DESIDERI L, et al. Investigational PI3K/AKT/mTOR inhibitors in development for endometrial cancer[J]. Expert Opin Investig Drugs, 2019, 28(2): 131-142.
|
| [34] |
ALAM S K, WANG L, ZHU Z, et al. IKKα promotes lung adenocarcinoma growth through ERK signaling activation via DARPP-32-mediated inhibition of PP1 activity[J]. NPJ Precis Oncol, 2023, 7(1): 33.
|
| [35] |
QIAO Y N, HE W Q, CHEN C P, et al. Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure[J]. J Biol Chem, 2014, 289(32): 22512-22523.
|
| [36] |
MUÑOZ-GALVÁN S, FELIPE-ABRIO B, VERDUGO-SIVIANES E M, et al. Downregulation of MYPT1 increases tumor resistance in ovarian cancer by targeting the Hippo pathway and increasing the stemness[J]. Mol Cancer, 2020, 19(1): 7.
|
| [37] |
WU H, ZHAO X B, WANG J, et al. Circular RNA CDR1as alleviates cisplatin-based chemoresistance by suppressing miR-1299 in ovarian cancer[J]. Front Genet, 2022, 12: 815448.
|
| [38] |
ZHAO Y S, ZHENG R Y, CHEN J, et al. CircRNA CDR1as/miR-641/HOXA9 pathway regulated stemness contributes to cisplatin resistance in non-small cell lung cancer (NSCLC)[J]. Cancer Cell Int, 2020, 20: 289.
|
| [39] |
TIWARI A, TASHIRO K, DIXIT A, et al. Loss of HIF1A from pancreatic cancer cells increases expression of PPP1R1B and degradation of p53 to promote invasion and metastasis[J]. Gastroenterology, 2020, 159(5): 1882-1897.e5.
|
| [40] |
ZHU Y X, KOSMACEK E A, CHATTERJEE A, et al. MnTE-2-PyP suppresses prostate cancer cell growth via H2O2 production[J]. Antioxidants (Basel), 2020, 9(6): 490.
|
| [41] |
HU L Y, XU H K, WANG X G, et al. The expression and clinical prognostic value of protein phosphatase 1 catalytic subunit beta in pancreatic cancer[J]. Bioengineered, 2021, 12(1): 2763-2778.
|
| [42] |
VERBINNEN I, BOENS S, FERREIRA M, et al. Enhanced DNA-repair capacity and resistance to chemically induced carcinogenesis upon deletion of the phosphatase regulator NIPP1[J]. Oncogenesis, 2020, 9(3): 30.
|
| [43] |
DENG M X, PENG L, LI J M, et al. PPP1R14B is a prognostic and immunological biomarker in pan-cancer[J]. Front Genet, 2021, 12: 763561.
|
| [44] |
XIANG N, CHEN T, ZHAO X L, et al. In vitro assessment of roles of PPP1R14B in cervical and endometrial cancer[J]. Tissue Cell, 2022, 77: 101845.
|
| [45] |
HE K, WANG T W, HUANG X M, et al. PPP1R14B is a diagnostic prognostic marker in patients with uterine corpus endometrial carcinoma[J]. J Cell Mol Med, 2023, 27(6): 846-863.
|
| [46] |
CHEN Z, TANG W J, YE W W, et al. ADAMTS9-AS2 regulates PPP1R12B by adsorbing miR-196b-5p and affects cell cycle-related signaling pathways inhibiting the malignant process of esophageal cancer[J]. Cell Cycle, 2022, 21(16): 1710-1725.
|
| [47] |
DING C B, TANG W D, WU H L, et al. The PEAK1-PPP1R12B axis inhibits tumor growth and metastasis by regulating Grb2/PI3K/Akt signalling in colorectal cancer[J]. Cancer Lett, 2019, 442: 383-395.
|
| [48] |
YANG J, ZHANG Q R, YANG Z Y, et al. KIF18A interacts with PPP1CA to promote the malignant development of glioblastoma[J]. Exp Ther Med, 2023, 25(4): 154.
|
| [49] |
YU Y H, ZHANG Y H, DING Y Q, et al. microRNA-99b-3p promotes angiotensin Ⅱ-induced cardiac fibrosis in mice by targeting GSK-3β[J]. Acta Pharmacol Sin, 2021, 42(5): 715-725.
|
| [50] |
KIRKBRIDE J A, NILSSON G Y, KIM J I, et al. PHI-1, an endogenous inhibitor protein for protein phosphatase-1 and a pan-cancer marker, regulates raf-1 proteostasis[J]. Biomolecules, 2023, 13(12): 1741.
|