[1] KATSUMURA S,SATO K,IKAWA T, et al. "High-precision, reconstructed 3D model" of skull scanned by conebeam CT:Reproducibility verified using CAD/CAM data[J].Leg Med (Tokyo), 2016, 18:37-43. [2] TANG H,YANG D,GUO S, et al. Digital tomosynthesis with metal artifact reduction for assessing cementless hip arthroplasty:a diagnostic cohort study of 48 patients[J]. Skeletal Radiol, 2016, 45(11):1523-1532. [3] NARDI C,BORRI C,REGINI F, et al. Metal and motion artifacts by cone beam computed tomography (CBCT) in dental and maxillofacial study[J]. Radiol Med, 2015,120(7):618-626. [4] KOMLOSI P,GRADY D,SMITH J S, et al. Evaluation of monoenergetic imaging to reduce metallic instrumentation artifacts in computed tomography of the cervical spine[J]. J Neurosurg Spine, 2015, 22(1):34-38. [5] BOUNDABBOUS S, ARDITI D,PAULIN E, et al. Model-based iterative reconstruction (MBIR) for the reduction of metal artifacts on CT[J]. AJR Am J Roentgenol, 2015, 205(2):380-385. [6] JEONG S,KIM S H,HWANG E J, et al. Usefulness of a metal artifact reduction algorithm for orthopedic implants in abdominal CT:phantom and clinical study results[J]. AJR Am J Roentgenol, 2015, 204(2):307-317. [7] HAN S C,CHUNG Y E,LEE Y H, et al. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip prostheses:assessment of image quality and clinical feasibility[J]. AJR Am J Roentgenol, 2014,203(4):788-795. [8] ELLIOTT M J,SLAKEY J B. CT provides precise size assessment of implanted titanium alloy pedicle screws[J]. Clin Orthop Relat Res, 2014, 472(5):1605-1609. [9] WINKLHOFER S,BENNINGER E,SPROSS C, et al. CT metal artefact reduction for internal fixation of the proximal humerus:value of mono-energetic extrapolation from dual-energy and iterative reconstructions[J]. Clin Radiol, 2014, 69(5):e199-206. [10] FILLI L,LUECHINGER R,FRAUENFERLDER T, et al. Metal-induced artifacts in computed tomography and magnetic resonance imaging:comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls[J]. Skeletal Radiol, 2015, 44(6):849-856. [11] RADZI S,COWIN G,ROBINSON M, et al. Metal artifacts from titanium and steel screws in CT, 1.5T and 3T MR images of the tibial Pilon:a quantitative assessment in 3D[J]. Quant Imaging Med Surg, 2014, 4(3):163-172. [12] MANOLIU A,HO M,NANZ D, et al. MR neurographic orthopantomogram:Ultrashort echo-time imaging of mandibular bone and teeth complemented with high-resolution morphological and functional MR neurography[J]. J Magn Reson Imaging, 2016, 44(2):393-400. [13] KAEWLEK T,KOOLPIRUCK D,THONGVIGITMANEE S, et al. Metal artifact reduction and image quality evaluation of lumbar spine CT images using metal sinogram segmentation[J]. J Xray Sci Technol, 2015, 23(6):649-666. [14] XIE S, LI C, LI H, et al. A level set method for cupping artifact correction in cone-beam CT[J]. Med Phys, 2015,42(8):4888-4895. [15] FRAGA-MANTEIGA E, SHAW D J, Dennison S, et al. An optimized computed tomography protocol for metallic gunshot head trauma in a seal model[J]. Vet Radiol Ultrasound, 2014, 55(4):393-398. [16] ZIEMANN C,STILLE M,CREMERS F, et al. The effects of metal artifact reduction on the retrieval ofattenuation values[J]. J Appl Clin Med Phys, 2017, 18(1):243-250. [17] WELLENBERG R H H,DONDERS J C E,KLOEN P, et al. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison:are implant specific protocols needed?[J]. Skeletal Radiol, 2017, 47(6):839-845. |