[1] ZHAO X W,VAN BEEK E M,SCHORNAGEL K,et al.CD47-signal regulatory protein-α (SIRPα) interactions form a barrier for antibody-mediated tumor cell destruction[J]. Proc Natl Acad Sci U S A,2011,108(45):18342-18347. [2] ANDRECHAK J C, DOOLING L J, DISCHER D E. The macrophage checkpoint CD47:SIRPα for recognition of ‘self’ cells:from clinical trials of blocking antibodies to mechanobiological fundamentals[J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1779):20180217. [3] OLDENBORG P A, GRESHAM H D, LINDBERG F P. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis[J]. J Exp Med, 2001, 193(7):855-862. [4] 张帆,何萌,李元,等.miR-17-5p靶向信号调节基因SIRPα调控巨噬细胞抗结核分枝杆菌的炎症反应[J]. 生物技术,2020,30(1):30-37. [5] ULUTZ H.Comment concerning the tole of CD47 and signal regulatory protein alpha in regulating the clearance of aged red blood cells[J]. Transfus Med Hemother,2013,40(2):140-141. [6] IDE K, WANG H, TAHARA H, et al. Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages[J]. Proc Natl Acad Sci U S A, 2007, 104(12):5062-5066. [7] LI D Y,XIE S L,WANG G Y,et al.CD47 blockade alleviates acute rejection of allogeneic mouse liver transplantation by reducing ischemia/reperfusion injury[J]. Biomed Pharmacother,2020,123:109793. [8] YANG H C, SHAO R Y, HUANG H X, et al. Engineering macrophages to phagocytose cancer cells by blocking the CD47/SIRPα axis[J]. Cancer Med, 2019, 8(9):4245-4253. [9] KOH E,LEE E J,NAM G H,et al.Exosome-SIRPα,a CD47 blockade increases cancer cell phagocytosis[J]. Biomaterials,2017,121:121-129. [10] HUANG Y, LV S Q, LIU P Y, et al. A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer[J]. Mol Oncol, 2020, 14(3):657-668. [11] MA L L, ZHU M, GAI J W, et al. Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential[J]. J Nanobiotechnol, 2020, 18(1):12. [12] KAUR S,SINGH S P,ELKAHLOUN A G,et al.CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells[J]. Matrix Biol,2014,37:49-59. [13] LIU B N, GUO H Z, XU J, et al. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses[J]. MAbs, 2018, 10(2):315-324. [14] ZHANG Z Z, WANG Q X, LIU Q, et al. Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy[J]. Adv Mater Weinheim, 2019, 31(51):e1905751. [15] RUAN H T, HU Q Y, WEN D, et al. A dual-bioresponsive drug-delivery depot for combination of epigenetic modulation and immune checkpoint blockade[J]. Adv Mater Weinheim, 2019, 31(17):e1806957. [16] LI Y, ZHANG M Y, WANG X D, et al. Vaccination with CD47 deficient tumor cells elicits an antitumor immune response in mice[J]. Nat Commun, 2020, 11(1):581. [17] RING N G, HERNDLER-BRANDSTETTER D, WEISKOPF K, et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity[J]. Proc Natl Acad Sci U S A, 2017, 114(49):E10578-E10585. [18] ZHANG M,HUTTER G,KAHN S A,et al.Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 Polarized macrophages and promotes M1 Polarized macrophages in vivo[J]. PLoS One,2016,11(4):e0153550. [19] WEISKOPF K. Cancer immunotherapy targeting the CD47/SIRPα axis[J]. Eur J Cancer Oxf Engl, 2017, 76:100-109. [20] RAMESH A, KUMAR S, NGUYEN A, et al.Lipid-based phagocytosis nanoenhancer for macrophage immunotherapy[J]. Nanoscale,2020,12(3):1875-1885. [21] 何剑,廖红伍,阳学风.ECEL1基因PSCSI-GFP慢病毒载体的构建[J].临床肝胆病杂志,2019,35(6):1286-1292. [22] SVENDSEN A,KIEFER H V,PEDERSEN H B,et al.Origin of the Intrinsic fluorescence of the green fluorescent protein[J]. J Am Chem Soc,2017,139(25):8766-8771. [23] 曹慧玲,朱小飞,滕凤猛,等.GFP作为脐带间充质干细胞体内示踪标志物在大鼠脑缺血再灌注损伤中的表达[J]. 国际检验医学杂志,2017,38(19):2688-2689,2693. [24] THOMAS P,SMART T G.HEK293 cell line:A vehicle for the expression of recombinant proteins[J]. J Pharmacol Toxicol Methods,2005,51(3):187-200. [25] 华进,程志彬,林春霖,等.一种高效稳定的磷酸钙转染293T细胞方法的建立及评价[J]. 吉林大学学报(医学版),2019,45(5):1177-1181,1198. |