1 |
YUAN K, MEI J, SHAO D D,et al. Cerium oxide nanoparticles regulate osteoclast differentiation bidirectionally by modulating the cellular production of reactive oxygen species[J]. Int J Nanomed, 2020, 15: 6355-6372.
|
2 |
LI H R, XIA P, PAN S, et al. The advances of ceria nanoparticles for biomedical applications in orthopaedics[J]. Int J Nanomed, 2020, 15: 7199-7214.
|
3 |
WANG H F, LI H Y, GONG X Q, et al. Oxygen vacancy formation in CeO2 and Ce(1-x)Zr(x)O2 solid solutions: electron localization, electrostatic potential and structural relaxation[J]. Phys Chem Chem Phys, 2012, 14(48): 16521-16535.
|
4 |
SINGH K R, NAYAK V, SARKAR T,et al.Cerium oxide nanoparticles:properties,biosynthesis and biomedical application[J].RSC Adv,2020,10(45):27194-27214.
|
5 |
LI J H, WEN J, LI B, et al. Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation[J]. Adv Sci (Weinh), 2018, 5(2): 1700678.
|
6 |
PARHAM S, WICAKSONO D H B, BAGHERBAIGI S, et al.Antimicrobial treatment of different metal oxide nanoparticles: a critical review[J]. ChemInform, 2016,63:385-393.
|
7 |
VIEIRA S, VIAL S, REIS R L, et al. Nanoparticles for bone tissue engineering[J]. Biotechnol Prog, 2017, 33(3): 590-611.
|
8 |
KAYGUSUZ H, TORLAK E, AKIN-EVINGÜR G, et al. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: a novel and potential wound dressing[J]. Int J Biol Macromol, 2017, 105(Pt 1): 1161-1165.
|
9 |
ZHOU L, TANG S P, YANG L, et al. Cerium ion promotes the osteoclastogenesis through the induction of reactive oxygen species[J]. J Trace Elem Med Biol, 2019, 52: 126-135.
|
10 |
LIU D D, ZHANG J C, LI Y P, et al. The effects of Ce on the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells in vitro [J]. Biol Trace Elem Res, 2012, 149(2): 291-297.
|
11 |
LIU D D, ZHANG J C, ZHANG Q, et al. TGF-β/BMP signaling pathway is involved in cerium-promoted osteogenic differentiation of mesenchymal stem cells[J]. J Cell Biochem, 2013, 114(5): 1105-1114.
|
12 |
GUPTA A, SAKTHIVEL T S, NEAL C J, et al. Antioxidant properties of ALD grown nanoceria films with tunable valency[J]. Biomater Sci, 2019, 7(7): 3051-3061.
|
13 |
XIANG H B, WANG Y, CHANG H, et al. Cerium-containing α-calcium sulfate hemihydrate bone substitute promotes osteogenesis[J].J Biomater Appl,2019,34(2): 250-260.
|
14 |
LI X, QI M, SUN X, et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities[J]. Acta Biomater, 2019, 94: 627-643.
|
15 |
LUO J C, ZHU S B, TONG Y,et al.Cerium oxide nanoparticles promote osteoplastic precursor differentiation by activating the Wnt pathway[J].Biol Trace Elem Res,2022:1-9.DOI:101.1007/S120011-022-03168-9 .
doi: 101.1007/S120011-022-03168-9
|
16 |
PANG N N, ZHANG F B, MA X M, et al. TGF-β/Smad signaling pathway regulates Th17/Treg balance during Echinococcus multilocularis infection[J]. Int Immunopharmacol, 2014, 20(1): 248-257.
|
17 |
MAQBOOL Q, NAZAR M, NAZ S, et al. Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea Europaea leaf extract[J]. Int J Nanomed, 2016, 11: 5015-5025.
|
18 |
BELLIO P, LUZI C, MANCINI A, et al. Cerium oxide nanoparticles as potential antibiotic adjuvant. Effects of CeO2 nanoparticles on bacterial outer membrane permeability[J]. Biochim Biophys Acta Biomembr, 2018, 1860(11): 2428-2435.
|
19 |
SAIDIN S, JUMAT M A, MOHD AMIN N A A,et al. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111382.
|
20 |
NADEEM M, KHAN R, AFRIDI K, et al. Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review[J]. Int J Nanomed, 2020, 15: 5951-5961.
|
21 |
JIA J, LI C, ZHANG T,et al.CeO2 @ PAA-LXW7 attenuates LPS-induced inflammation in BV2 microglia [J].Cell Mol Neurobiol,2019,39(8):1125-1137.
|
22 |
ZHANG M Z, ZHANG C, ZHAI X Y,et al.Antibacterial mechanism and activity of cerium oxide nanoparticles[J].Sci China Mater,2019,62(11):1727-1739.
|
23 |
FARIAS I A P, SANTOS C C L D, SAMPAIO F C.Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: a systematic review[J].Bio Med Res Int,2018,2018:1923606.
|
24 |
TRUFFAULT L, RODRIGUES D F, SALGADO H R N,et al. Loaded Ce-Ag organic-inorganic hybrids and their antibacterial activity[J]. Colloids Surf B Biointerfaces, 2016, 147: 151-160.
|
25 |
KUMAR K M, MAHENDHIRAN M, DIAZ M C,et al. Green synthesis of Ce3+ rich CeO2 nanoparticles and its antimicrobial studies[J]. Mat Lett, 2018, 214: 15-19.
|
26 |
KUANG Y S, HE X, ZHANG Z Y, et al. Comparison study on the antibacterial activity of nano-or bulk-cerium oxide[J]. J Nanosci Nanotechnol, 2011, 11(5): 4103-4108.
|
27 |
ZHANG M Z, ZHANG C P, ZHAI X Y, et al. Antibacterial mechanism and activity of cerium oxide nanoparticles[J]. Sci China Mater, 2019, 62(11): 1727-1739.
|
28 |
RAMALINGAM B, PARANDHAMAN T, DAS S K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa [J]. ACS Appl Mater Interfaces, 2016, 8(7): 4963-4976.
|
29 |
THILL A, ZEYONS O, SPALLA O, et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. physico-chemical insight of the cytotoxicity mechanism[J]. Environ. Sci Technol., 2006, 40(19): 6151-6156.
|
30 |
HORIE M, NISHIO K, KATO H, et al. Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on culture cells[J]. J Biochem, 2011, 150(4): 461-471.
|
31 |
FISHER T J, ZHOU Y Y, WU T-S, et al. Structure-activity relationship of nanostructured ceria for the catalytic generation of hydroxyl radicals[J]. Nanoscale, 2019, 11(10): 4552-4561.
|
32 |
PAGLIARI F, MANDOLI C, FORTE G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress[J]. ACS Nano, 2012, 6(5): 3767-3775.
|
33 |
TANG S P, ZHOU L, LIU Z Y,et al.Ceria nanoparticles promoted the cytotoxic activity of CD8+ T cells by activating NF-κB signaling[J]. Biomater Sci, 2019, 7(6): 2533-2544.
|
34 |
HOSSEINI M, MOZAFARI M. Cerium oxide nanoparticles: recent advances in tissue engineering[J]. Materials (Basel), 2020, 13(14):E3072.
|
35 |
PESARAKLOU A, MAHDAVI-SHAHRI N, HASSANZADEH H, et al. Use of cerium oxide nanoparticles: a good candidate to improve skin tissue engineering[J]. Biomed Mater, 2019, 14(3): 035008.
|
36 |
ZHANG D Y, LIU H K, LI C Y, et al. Ceria nanozymes with preferential renal uptake for acute kidney injury alleviation[J]. ACS Appl Mater Interfaces,2020,12(51): 56830-56838.
|
37 |
YU H, JIN F Y, LIU D,et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury[J]. Theranostics, 2020, 10(5): 2342-2357.
|