Journal of Jilin University(Medicine Edition) ›› 2023, Vol. 49 ›› Issue (4): 1092-1098.doi: 10.13481/j.1671-587X.20230434
• Review • Previous Articles
Received:
2022-04-26
Online:
2023-07-28
Published:
2023-07-26
CLC Number:
1 | WANG X Y, LO E H. Triggers and mediators of hemorrhagic transformation in cerebral ischemia[J]. Mol Neurobiol, 2003, 28(3): 229-244. |
2 | AMANAKIS G, MURPHY E. Cyclophilin D: an integrator of mitochondrial function[J]. Front Physiol, 2020, 11: 595. |
3 | AGARWAL A, WU P H, HUGHES E G, et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes[J]. Neuron, 2017, 93(3): 587-605. |
4 | ZHANG L, LIU Y, ZHOU R, et al. Cyclophilin D: guardian or executioner for tumor cells?[J]. Front Oncol, 2022, 12: 939588. |
5 | BRISTON T, SELWOOD D L, SZABADKAI G,et al. Mitochondrial permeability transition: a molecular lesion with multiple drug targets[J]. Trends Pharmacol Sci, 2019, 40(1): 50-70. |
6 | HALECKOVA A, BENEK O, ZEMANOVÁ L, et al. Small-molecule inhibitors of cyclophilin D as potential therapeutics in mitochondria-related diseases[J]. Med Res Rev, 2022, 42(5): 1822-1855. |
7 | DUMBALI S P, WENZEL P L. Mitochondrial permeability transition in stem cells, development, and disease[J]. Adv Exp Med Biol, 2023, 1409: 1-22. |
8 | WU P K, HONG S K, PARK J I. Mortalin depletion induces MEK/ERK-dependent and ANT/CypD-mediated death in vemurafenib-resistant B-RafV600E melanoma cells[J]. Cancer Lett, 2021, 502: 25-33. |
9 | BOYENLE I D, OYEDELE A K, OGUNLANA A T, et al. Targeting the mitochondrial permeability transition pore for drug discovery: challenges and opportunities[J]. Mitochondrion, 2022, 63: 57-71. |
10 | FENG W Y, WANG J B, LI B D, et al. Graphene oxide leads to mitochondrial-dependent apoptosis by activating ROS-p53-mPTP pathway in intestinal cells[J]. Int J Biochem Cell Biol, 2022, 146: 106206. |
11 | MCGEE A, BAINES C. Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death[J]. Biochem J, 2011, 433(1): 119-125. |
12 | AMODEO G F, PAVLOV E V.Amyloid β,α-synuclein and the c subunit of the ATP synthase: can these peptides reveal an amyloidogenic pathway of the permeability transition pore?[J]. Biochim Biophys Acta Biomembr, 2021, 1863(3): 183531. |
13 | YAN S J, DU F, WU L, et al. F1F0 ATP synthase-cyclophilin D interaction contributes to diabetes-induced synaptic dysfunction and cognitive decline[J]. Diabetes, 2016, 65(11): 3482-3494. |
14 | HURST S, GONNOT F, DIA, et al. Phosphorylation of cyclophilin D at serine 191 regulates mitochondrial permeability transition pore opening and cell death after ischemia-reperfusion[J].Cell Death Dis,2020,11(8):661. |
15 | SAMBRI I, MASSA F, GULLO F, et al. Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia[J]. EBioMedicine, 2020, 61: 103050. |
16 | PAILLARD M, TUBBS E, THIEBAUT P A, et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury[J]. Circulation, 2013, 128(14): 1555-1565. |
17 | BERNARDI P, CARRARO M, LIPPE G. The mitochondrial permeability transition: recent progress and open questions[J]. FEBS J, 2022, 289(22): 7051-7074. |
18 | RAMACHANDRAN K, MAITY S, MUTHUKUMAR A R, et al. SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics[J]. iScience, 2022, 25(1): 103722. |
19 | MORCIANO G, NAUMOVA N, KOPROWSKI P, et al. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death[J]. Biol Rev Camb Philos Soc, 2021, 96(6): 2489-2521. |
20 | MODESTI L, DANESE A, ANGELA MARIA VITTO V, et al. Mitochondrial Ca2+ signaling in health, disease and therapy[J].Cells,2021,10(6): 1317. |
21 | BAINES C P, GUTIÉRREZ-AGUILAR M. The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore[J]. Cell Calcium, 2018, 73: 121-130. |
22 | SCHINZEL A C, TAKEUCHI O, HUANG Z H,et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia[J]. Proc Natl Acad Sci U S A, 2005, 102(34): 12005-12010. |
23 | ABRAMOV A Y, DUCHEN M R. Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity[J]. Biochim Biophys Acta, 2008, 1777(7/8): 953-964. |
24 | MNATSAKANYAN N, PARK H A, WU J, et al. Mitochondrial ATP synthase c-subunit leak channel triggers cell death upon loss of its F1 sub complex[J]. Cell Death Differ, 2022, 29(9): 1874-1887. |
25 | YAMAGUCHI T, MIYATA K, SHIBASAKI F,et al. Effect of cyclosporin a on immediate early gene in rat global ischemia and its neuroprotection[J]. J Pharmacol Sci, 2006, 100(1): 73-81. |
26 | OKADA M, YAMASHITA S, UEYAMA H, et al. Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis[J]. eNeurological Sci, 2018, 11: 11-14. |
27 | AYOUB I M, RADHAKRISHNAN J, GAZMURI R J. In vivo opening of the mitochondrial permeability transition pore in a rat model of ventricular fibrillation and closed-chest resuscitation[J]. Am J Transl Res, 2017, 9(7): 3345-3359. |
28 | VACHON P, BEAUDRY F, MARIER J F, et al. Cyclosporin A in blood and brain tissue following intra-carotid injections in normal and stroke-induced rats[J]. Brain Res, 2002, 943(1): 1-8. |
29 | LI P G, HE Q P, SIESJÖ B K. Effects of intracarotid arterial injection of cyclosporin A and spontaneous hypothermia on brain damage incurred after a long period of global ischemia[J].Brain Res,2001,890(2): 306-313. |
30 | ENDLICHER R, KRIVÁKOVÁ P, LOTKOVA H, et al. Tissue specific sensitivity of mitochondrial permeability transition pore to Ca2+ ions[J]. Acta Medica, 2009, 52(2): 69-72. |
31 | ZHENG J Y, CUI E H, YANG H K, et al. Targeting cyclophilin-D by compound 19 protects neuronal cells from oxygen glucose deprivation/re-oxygenation[J]. Oncotarget, 2017, 8(52): 90238-90249. |
32 | PENG J Z, XUE L, CHEN J, et al. Influence of cyclophilin D protein expression level on endothelial cell oxidative damage resistance[J]. Genet Mol Res, 2015, 14(2): 4258-4268. |
33 | HUANG P, WU S P, WANG N, et al. Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore[J]. Phytomedicine, 2021, 85: 153532. |
34 | WU J, DENG Z Y, SUN M M, et al. Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation[J]. Lab Invest, 2020, 100(4): 643-656. |
35 | MARCU R, KOTHA S, ZHI Z W, et al. The mitochondrial permeability transition pore regulates endothelial bioenergetics and angiogenesis[J]. Circ Res, 2015, 116(8): 1336-1345. |
36 | DENORME F, MANNE B K, PORTIER I, et al. Platelet necrosis mediates ischemic stroke outcome in mice[J]. Blood, 2020, 135(6): 429-440. |
37 | IKEDA G, MATOBA T, ISHIKITA A, et al. Nanoparticle-mediated simultaneous targeting of mitochondrial injury and inflammation attenuates myocardial ischemia-reperfusion injury[J]. J Am Heart Assoc, 2021, 10(12): e019521. |
38 | OKAHARA A, KOGA J I, MATOBA T, et al. Simultaneous targeting of mitochondria and monocytes enhances neuroprotection against ischemia-reperfusion injury[J]. Sci Rep, 2020, 10(1): 14435. |
39 | VERES B, EROS K, ANTUS C, et al. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia[J]. FEBS Open Bio, 2021, 11(3): 684-704. |
40 | RAO V K, CARLSON E A, YAN S S. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2014, 1842(8): 1267-1272. |
41 | GUO H X, WANG F, YU K Q, et al. Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/release[J]. Acta Pharmacol Sin, 2005, 26(10): 1201-1211. |
42 | VALASANI K R, SUN Q R, FANG D, et al. Identification of a small molecule cyclophilin D inhibitor for rescuing aβ-mediated mitochondrial dysfunction[J]. ACS Med Chem Lett, 2016, 7(3): 294-299. |
43 | SHORE E R, AWAIS M, KERSHAW N M, et al. Small molecule inhibitors of cyclophilin D to protect mitochondrial function as a potential treatment for acute pancreatitis[J]. J Med Chem, 2016, 59(6): 2596-2611. |
44 | XIE L Q, CHENG L, XU G X, et al. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation[J]. Biochem Biophys Res Commun, 2017, 487(4): 807-812. |
45 | KENT A C, BARADIE K B YEL, HAMRICK M W. Targeting the mitochondrial permeability transition pore to prevent age-associated cell damage and neurodegeneration[J]. Oxid Med Cell Longev, 2021, 2021: 6626484. |
[1] | Lingna HAN,Chunlei WANG,Yongli CHANG,Li YUAN,Xiaojing LIU. Effect of electrical lesions of lateral habenular nucleus on spatial learning and memory functions in rats with Parkinson’s disease and its mechanism [J]. Journal of Jilin University(Medicine Edition), 2021, 47(5): 1108-1115. |
[2] | . [J]. Journal of Jilin University(Medicine Edition), 2021, 47(4): 1050-1055. |
[3] | . [J]. Journal of Jilin University(Medicine Edition), 2021, 47(1): 243-248. |
[4] | HE Xiuli, LI Dan, SU Jinghan, YUAN Haibo, LYU Xiaohong. Catathrenia: A case report and literature review [J]. Journal of Jilin University(Medicine Edition), 2020, 46(02): 404-407. |
[5] | . Research progress in glycogen synthase kinase-3β involved in neuropathic pain [J]. Journal of Jilin University(Medicine Edition), 2020, 46(01): 188-193. |
[6] | LIU Xiaohua, HAN Man, ZHANG Qi. Inhibitory effect of activation of cardiac TRPV1 receptors on cardiovascular activity in rats [J]. Journal of Jilin University(Medicine Edition), 2019, 45(05): 992-996. |
[7] | . Research progress in GABA A receptor on pain modulation in dorsal root ganglion neurons [J]. Journal of Jilin University(Medicine Edition), 2018, 44(06): 1322-1325. |
[8] | WANG Chunlei, CHANG Yongli, HAN Lingna. Improvement effects of repeated transcranial direct current stimulation on depression behaviors in rat models of Parkinson's disease and their mechanisms [J]. Journal of Jilin University Medicine Edition, 2018, 44(04): 693-697. |
[9] | ZHANG Shujian, ZHANG Youchen, LI Huiwen, JIN Zhengyong. Effect of hyperoxia on NRP-cGMP signaling pathway in brain tissue of newborn rats [J]. Journal of Jilin University Medicine Edition, 2018, 44(03): 477-482. |
[10] | LIHe, CHAI Wengang, XU Guoxing, LI Zhenlan. Evaluation on curative effect of modified constraint-induced movement therapy in rehabilitation of activity of daily living in patients with sub-acute stroke [J]. Journal of Jilin University Medicine Edition, 2016, 42(06): 1183-1188. |
[11] | LUO Rong, OUYANG Zhengpeng, GUO Yuan, YAO Fanrong, LI Li, WANG Jun, MA Shaojie, ZHAO Yan. Inhibitory effect of octreotide on sodium glutamate-evoked activation of Aδ and C fibers [J]. Journal of Jilin University Medicine Edition, 2015, 41(05): 919-924. |
[12] | LIU Xiao-hua,HAN Man,DU Jian-qing. Regulation of metabotropic glutamate subtype 7 and 8 receptors in nucleus tractus solitarius in cardiac nociception in rats [J]. Journal of Jilin University Medicine Edition, 2014, 40(05): 920-924. |
[13] | LIU Yan-tong,GAO Jie,WANG Shuang. Influence of intraventricular injection of 5,7-drhydroxytryptamine in 5-HT1A receptor sensitivity of pyramidal neurons in medial prefrontal cortex [J]. Journal of Jilin University Medicine Edition, 2014, 40(05): 958-961. |
[14] | LIU Xiao-hua,HAN Man,DU Jian-qing. Role of glutamate receptor subtypes in cardiac nociception in nucleus tractus solitarius in rats [J]. Journal of Jilin University Medicine Edition, 2014, 40(03): 508-512. |
[15] | SUN Na,NIU Li-gang,KONG Ling-heng,ZHU Juan-xia,XU Yan,DU Jian-qing. Descending inhibitory modulation of nucleus raphes magnus in cardiac nociception in rats and its pathway [J]. Journal of Jilin University Medicine Edition, 2014, 40(03): 513-518. |
|