吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (4): 1229-1235.doi: 10.13278/j.cnki.jjuese.201704203

• 地质工程与环境工程 • 上一篇    下一篇

基于GMS的三维TOUGH2模型及模拟

谭家华1, 雷宏武2   

  1. 1. 中铁第四勘察设计院集团有限公司, 武汉 430063;
    2. 中国科学院武汉岩土力学研究所, 武汉 430071
  • 收稿日期:2016-10-07 出版日期:2017-07-26 发布日期:2017-07-26
  • 通讯作者: 雷宏武(1985),男,在站博士后,主要从事多相流体数值模拟程序开发和应用方面的研究,E-mail:hongwulei2008@aliyun.com E-mail:hongwulei2008@aliyun.com
  • 作者简介:谭家华(1985),男,工程师,主要从事工程地质水文地质工作,E-mail:350056332@qq.com
  • 基金资助:
    国家自然科学基金项目(41502246);中国博士后基金项目(2015M580682)

Three Dimension Model Construction for TOUGH2 Based on GMS and Comparison of Simulations

Tan Jiahua1, Lei Hongwu2   

  1. 1. China Railway Siyuan Survey and Design Group co., LTD, Wuhan 430063, China;
    2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2016-10-07 Online:2017-07-26 Published:2017-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41502246)and China Postdoctoral Science Foundation(2015M580682)

摘要: GMS和TOUGH2均是应用广泛的地下流动系统数值模拟软件,其中,GMS界面友好,功能强大;而TOUGH2虽具有强大的数值计算能力,但缺乏友好的可视化前后处理界面。本文借助GMS强大的前处理能力,基于概念模型建立了三维复杂模型,把GMS/MODFLOW三维数值模型(包括网格数据、岩性数据、初始和边界数据等)转化为TOUGH2数值模型进行数值计算。通过两个计算实例(含水层水平没有起伏和有起伏)对比分析了GMS/MODFLOW和TOUGH2计算结果的差异。结果显示,该方法可以快速地建立刻画复杂地质条件的TOUGH2模型,计算结果与GMS/MODFLOW差异很小,说明两个软件均有很高的可信度;同时,该方法发挥了两个软件各自的优势,为进行更为复杂的多相流动数值模拟提供了可行性。

关键词: 数值模拟, GMS, TOUGH2, 三维模型, 模拟对比

Abstract: GMS and TOUGH2 are the famous softwares in the field of groundwater numerical simulation. Although TOUGH2 has the strong ability of numerical calculation, it lacks the friendly interface for pre- and post-process. With the powerful function of pre- and post-process in GMS and the conceptual modeling approach to construct the three dimension model, this paper converts the numerical model of GMS/MODFLOW (including gridding data, rocks property, initial and boundary data) into that of TOUGH2 for numerical calculation. Two examples (flat aquifers and variation elevation of aquifers) are used to analyze the difference of results between GMS/MODFLOW and TOUGH2. The results indicate that this method is elegant to construct complex model fast for TOUGH2 and the difference is small which proves the high credibility for those two softwares. At the same time, this method can take individual advantage of the softwares and provide the feasibility to conduct more complex multiphase flow simulations.

Key words: numerical simulation, GMS, TOUGH2, three dimension model, comparison of simulations

中图分类号: 

  • P641.69
[1] 祝晓彬. 地下水模拟系统(GMS)软件[J]. 水文地质工程地质, 2003, 30(5): 53-55. Zhu Xiaobin. Groundwater Modeling System(GMS) Software[J]. Hydrogeology & Engineering Geology, 2003, 30(5): 53-55.
[2] Owen S J, Jones N L, Holland J P. A Comprehensive Modeling Environment for the Simulation of Groundwater Flow and Transport[J]. Engineering with Computers, 1996, 12(3): 235-242.
[3] Pruess K, Oldenburg C M, Moridis G J. TOUGH2 User's Guide[M]. 2nd ed. Berkeley: Lawrence Berkeley National Laboratory, 1999.
[4] 郭亮亮, 张延军, 许天福, 等. 大庆徐家围子不同储层改造的干热岩潜力评估[J]. 吉林大学学报(地球科学版), 2016, 46(2): 525-535. Guo Liangliang, Zhang Yanjun, Xu Tianfu, et al. Evaluation of Hot Dry Rock Resource Potential Under Different Reservoir Conditions in Xujiaweizi Area, Daqing[J]. Journal of Jilin University (Earth Scicncc Edition), 2016, 46(2): 525-535.
[5] 雷宏武, 金光荣, 李佳琦, 等. 松辽盆地增强型地热系统(EGS)地热能开发热-水动力耦合过程[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1633-1646. Lei Hongwu, Jin Guangrong, Li Jiaqi, et al. Coupled Thermal-Hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermla System at Songliao Basin, China[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(5): 1633-1646.
[6] 韩忠, 邵景力, 崔亚莉, 等. 基于MODFLOW的地下水流模型前处理优化[J]. 吉林大学学报(地球科学版), 2014,44 (4): 1290-1296. Han Zhong, Shao Jingli, Cui Yali, et al. Preprocessing Optimization of Groundwater Flow Model Based on MODFLOW[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1290-1296.
[7] Thunderhead Engineering. Petrasim User Manual [M]. 4th ed. New York:[s.l.], 2007.
[8] Li Y, Niewiadomski M, Trujillo E, et al. Tougher: A User-Friendly Graphical Interface for TOUGHREACT[J]. Computers & Geosciences, 2011, 37(6): 775-782.
[9] Florian Wellmann J, Croucher A, Regenauer-Lieb K. Python Scripting Libraries for Subsurface Fluid and Heat Flow Simulations with TOUGH2 and SHEMAT[J]. Computers & Geosciences, 2012, 43: 197-206.
[10] Audigane P, Chiaberge C, Mathurin F, et al. A Workflow for Handling Heterogeneous 3D Models with the TOUGH2 Family of Codes: Applications to Numerical Modeling of CO2 Geological Storage[J]. Computers & Geosciences, 2011, 37(4): 610-620.
[11] Borgia A, Cattaneo L, Marconi D, et al. Using a MODFLOW Grid, Generated with GMS, to Solve a Transport Problem with TOUGH2 in Complex Geological Environments: The Intertidal Deposits of the Venetian Lagoon[J]. Computers & Geosciences, 2011, 37(6): 783-790.
[12] 杨艳林, 许天福, 李佳琦, 等. 应用TOUGH模拟二氧化碳地质储存过程的复杂地质体建模技术与实现[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1307-1313. Yang Yanlin, Xu Tianfu, Li Jiaqi, et al. Complex Geological Body Modeling and Implementation of CO2 Geological Storage Simulation Using TOUGH[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 525-535.
[13] Berry P, Bonduá S, Bortolotti V, et al. A GIS-Based Open Source Pre-Processor for Georesources Numerical Modeling[J]. Environmental Modelling & Software, 2014, 62: 52-64.
[14] Bonduá S, Berry P, Bortolotti V, et al. TOUGH2 Viewer: A Post-Processing Tool for Interactive 3D Visualization of Locally Refined Unstructured Grids for TOUGH2[J]. Computers & Geosciences, 2012, 46: 107-118.
[15] Avis J, Calder N. Walsh R. mView: A Powerful Pre-and Post-Processor for TOUGH2 [C]//Proceedings of TOUGH Symposium. Berkeley: Lawrence Berkeley National Laboratory, 2012: 1-11.
[16] Hu L, Zhang K, Cao X, et al. IGMESH: A Convenient Irregular-Grid-Based Pre-and Post-Processing Tool for TOUGH2 Simulator[J]. Computers & Geosciences, 2016, 95: 11-17.
[17] Harbaugh A W, MODFLOW-2005: The U S Geological Survey Modular Ground-Water Model:The Ground-Water Flow Process, in Techniques and Methods [R]. Reston: U S Geological Survey, 2005.
[18] McDonald M G, Harbaugh A W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model [R]//Techniques of Water-Resources Investigations of U S Geological Survey. Reston: U S Geological Survey, 2005.
[19] Environmental Modeling Research Laboratory. Groundwater Modeling System Tutorials: Vol 2: Modflow-Conceptual Modeling Approach[R]. Provo: Aquaveo, 2004.
[1] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[2] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[3] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[4] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[5] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[6] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[7] 邹友琴, 刘莉, 李宏卿, 颜春, 曾马荪, 兰盈盈. 水文地质条件对页岩气开采控制[J]. 吉林大学学报(地球科学版), 2016, 46(3): 824-830.
[8] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[9] 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219.
[10] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[11] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
[12] 张剑波, 李谢清, 石阳, 朱建勃. 油藏数值模拟中地质模型的建模流程与方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 860-868.
[13] 束龙仓, 范建辉, 鲁程鹏, 张春艳, 唐然. 裂隙-管道介质泉流域水文地质模拟试验[J]. 吉林大学学报(地球科学版), 2015, 45(3): 908-917.
[14] 杨丽春, 庞宇斌, 李慎刚. 超长基坑开挖的空间效应[J]. 吉林大学学报(地球科学版), 2015, 45(2): 541-545.
[15] 雷宏武, 李佳琦, 许天福, 王福刚. 鄂尔多斯盆地深部咸水层二氧化碳地质储存热-水动力-力学(THM)耦合过程数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(2): 552-563.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!