吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1161-1172.doi: 10.13278/j.cnki.jjuese.20190041

• 地质工程与环境工程 • 上一篇    

增强型地热系统采热性能影响因素分析

段云星, 杨浩   

  1. 中国地质大学(北京)工程技术学院, 北京 100083
  • 收稿日期:2019-03-06 发布日期:2020-07-29
  • 通讯作者: 杨浩(1978-),男,副教授,博士生导师,主要从事油气田开发、地质钻探方面的研究,E-mail:yanghao@cugb.edu.cn E-mail:yanghao@cugb.edu.cn
  • 作者简介:段云星(1992-),男,博士研究生,主要从事地热资源开发、钻探泥浆方面的研究,E-mail:tansund@foxmail.com
  • 基金资助:
    国家自然科学基金项目(51474192)

Analysis of Influencing Factors on Heat Extraction Performance of Enhanced Geothermal System

Duan Yunxing, Yang Hao   

  1. School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
  • Received:2019-03-06 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China (51474192)

摘要: 为了综合分析增强型地热系统各参数对系统采热性能的影响,以及参数相互之间的影响规律,以云南腾冲热海热田为地质背景,利用正交设计思想通过数值模拟方法对井间距、注入流量、注入温度、储层渗透率等因素的变化进行了分析。结果表明:注入流量是影响系统采热性能的关键因素,并对注入温度、井间距的确定有显著影响;注入流量越大,系统稳定采热时间和运行寿命越短,且注入流量较小的变化(提高0.06 m3/s)会对系统采热温度产生较大的影响(降低47℃);增加注入温度可以提高系统的采热温度和运行寿命,但注入温度升高30℃、运行50 a后采热温度只提高10℃,效果有限;井间距、渗透率、开采压力对系统采热性能的影响相近,且远小于注入流量。

关键词: 增强型地热系统, 井网设计, 数值模拟, 参数优化

Abstract: The Rehai geothermal field was taken as the geological background, the influence of well spacing, injection flow rate and temperature, and reservoir permeability on the heat extraction performance of the enhanced geothermal system were analyzed by using the orthogonal design method, and also the mutual influence between these factors. The results show that the injection flow rate is the key factor affecting the heat extraction performance and has a significant impact on the determination of injection temperature and well spacing. The larger the injection flow rate is, the shorter the stable heat extraction time and operating life are. The smaller the change of injection flow rate (increase 0.06 m3/s) is,the greater the impact will be on the heat extraction temperature (decrease 47 ℃); Increasing the injection temperature can improve the heat extraction temperature and operating life; however, the effect is limited. When the injection temperature is increased by 30 ℃, the heat recovery temperature is only increased by 10 ℃ after 50 a. The effects of well spacing, permeability, and production pressure on the heat extraction performance are similar and much smaller than the injection flow rate.

Key words: enhanced geothermal system, well pattern design, numerical simulation, parameter optimization

中图分类号: 

  • P314
[1] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Evaluation of Geothermal Resources Potential for Dry Hot Rock in China Mainland[J]. Science & Technology Review, 2012, 30(42):25-31.
[2] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4):1139-1152. Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, et al. Hot Dry Rock and Enhanced Geothermal Engineering:International Experience and China Prospect[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4):1139-1152.
[3] 凌璐璐, 苏正, 翟海珍, 等. 西藏羊易EGS开发储层温度场与开采寿命影响因素数值模拟研究[J]. 新能源进展, 2015, 3(5):367-374. Ling Lulu, Su Zheng, Zhai Haizhen, et al. Numerical Simulation Study of the Parameters Effect on Temperature Distribution and Mining Life During EGS Exploitation, Yangyi of Tibet[J]. Advances in New And Renewable Energy, 2015, 3(5):367-374.
[4] 陈继良, 蒋方明. 增强型地热系统热开采过程的数值模拟研究[J]. 新能源进展, 2013, 1(2):189-195. Chen Jiliang, Jiang Fangming. A Numerical Study to Heat Mining Process of Enhanced Geothermal Systems[J]. Advances in New and Renewable Energy, 2013, 1(2):189-195.
[5] 陈继良, 蒋方明. 增强型地热系统热开采性能的数值模拟分析[J]. 可再生能源, 2013, 31(12):111-117. Chen Jiliang, Jiang Fangming. A Numerical Study on Heat Extraction Performance of Enhanced Geothermal Systems[J]. Renewable Energy Resources, 2013, 31(12):111-117.
[6] 岳高凡, 邓晓飞, 邢林啸, 等.共和盆地增强型地热系统开采过程数值模拟[J]. 科技导报, 2014, 33(19):62-67. Yue Gaofan, Deng Xiaofei, Xing Linxiao, et al. Numerical Simulation of Hot Dry Rock Exploitation Using Enhanced Geothermal Systems in Gonghe Basin[J]. Science & Technology Review, 2014, 33(19):62-67.
[7] 杨艳林, 靖晶, 王福刚, 等. CO2增强地热系统中的井网间距优化研究[J]. 太阳能学报, 2014, 35(7):1130-1137. Yang Yanlin, Jing Jing, Wang Fugang. Optimal Design of Well Spacing on CO2 Enhanced Geothermal[J]. Acta Energiae Solaris Sinica, 2014, 35(7):1130-1137.
[8] 甘浩男, 王贵玲, 蔺文静, 等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 2015, 33(19):22-27. Gan Haonan, Wang Guiling, Lin Wenjing. Research on the Occurrence Types and Genetic Models of Hot Dry Rock Resources in China[J]. Science & Technology Review, 2015, 33(19):22-27.
[9] 徐青, 李翠华, 汪缉安, 等. 云南地热资源:以腾冲地区为重点进行解剖[J]. 地质地球化学, 1997(4):77-84. Xu Qing, Li Cuihua, Wang Ji'an, et al. Geothermal Resources in Tengchong Region Yunnan Province[J]. Geology-Geochemistry, 1997(4):77-84.
[10] 廖志杰, 尹正武, 贾希义, 等. 腾冲热海地热田的概念模型[J]. 高校地质学报, 1997,3(2):85-94. Liao Zhijie, Yin Zhengwu, Jia Xiyi. Conceptual Model of the Rehai (Hot Sea) Geothermal Field in Tengchong, Yunnan Province,China[J]. Geology Journal of Chinese University, 1997, 3(2):85-94.
[11] 上官志冠. 腾冲热海地热田热储结构与岩浆热源的温度[J]. 岩石学报, 2000,16(1):83-90. Shangguan Zhiguan. Structure of Geothermal Reservoirs and the Temperature of Mantle-Derived Magma Hot Source in the Rehai Area, Tengchong[J]. Acta Petrologica Sinica, 2000, 16(1):83-90.
[12] 赵慈平, 冉华, 陈坤华. 由相对地热梯度推断的腾冲火山区现存岩浆囊[J]. 岩石学报, 2006, 22(6):1517-1528. Zhao Ciping, Ran Hua, Chen Kunhua. Present-Day Magma Chambers in Tengchong Volcano Area Inferred from Relative Geothermal Gradient[J]. Acta Petrologica Sinica, 2006,22(6):1517-1528.
[13] 方娜. 腾冲热海地热田地质特征及形成机制研究[D]. 昆明:昆明理工大学, 2013. Fang Na. Geological Characteristics and Formation Mechanism of Tengchong Rehai Geothermal Field[D]. Kunming:Kunming University of Science and Technology, 2013.
[14] 郭婷婷. 云南腾冲热海地热田特征及成因研究[D]. 昆明:昆明理工大学, 2013. Guo Tingting. Study on Characteristics and Genesis of Rehai Geothermal Field in Yunnan[D]. Kunming:Kunming University of Science and Technology, 2013.
[15] 李洁祥, 郭清海, 王焰新. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程:以腾冲热海热田为例[J]. 地球科学, 2015, 40(9):1576-1584. Li Jiexiang, Guo Qinghai, Wang Yanxin. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Process During Ascent to Surface:A Case Study in Rehai Geothermal Field Tengchong[J]. Earth Science, 2015, 40(9):1576-1584.
[16] 全国地质资料馆/数字地质资料馆. 1:20万地质图G4727幅数据[EB/OL]. (2013-06-27)[2018-11-25]. http://www.ngac.org.cn/Document/Map.aspx?MapId=EC7E1A7A78E51954E0430100007F182E. National Geological Archive/Digital Geological Archive. 1:200000 Geological Maps G4727 Data[EB/OL]. (2013-06-27)[2018-11-25]. http://www.ngac.org.cn/Document/Map.aspx?MapId=EC7E1A7A78E51954E0430100007F182E.
[17] 段云星. 干热岩地热资源开采井网优化数值模拟研究[D]. 北京:中国地质大学(北京), 2017. Duan Yunxing. Study on Numerical Simulation of Well Pattern Optimization for Exploitation of Dry Hot Rock Geothermal Resources[D]. Beijing:China University of Geosciences (Beijing), 2017.
[18] 孙培德, 杨东全, 陈奕柏. 多物理场耦合模型及数值模拟导论[M]. 北京:中国科学技术出版社, 2007:113-116. Sun Peide, Yang Dongquan, Chen Yibo. Introduction to Coupling Models for Multiphysics and Numerical Simulations[M]. Beijing:Science and Technology Press of China, 2007:113-116.
[19] 赵阳升, 万志军, 康建荣. 高温岩体地热开发导论[M]. 北京:科学出版社, 2004:15-30. Zhao Yangsheng, Wan Zhijun, Kang Jianrong. Introduction to Development of Hot Rock[M]. Beijing:Science Press, 2004:15-30.
[20] Leary P, Malin P. Prospects for Assessing Enhanced Geothermal System (EGS) Basement Rock Flow Stimulation by Wellbore Temperature Data[J]. Energies, 2017, 10(12):1979.
[21] Guo L L, Zhang Y B. Experimental investigation of Granite Properties Under Different Temperatures and Pressures and Numerical Analysis of Damage Effect in Enhanced Geothermal System[J]. Renewable Energy, 2018, 12(6):107-125.
[22] Kong Y L, Pang Z H. Optimization of Well-Doublet Placement in Geothermal Reservoirs Using Numerical Simulation and Economic Analysis[J]. Environment Earth Science, 2017,76:118.
[23] Pandey S N, Vishal V. Sensitivity Analysis of Coupled Processes and Parameters on the Performance of Enhanced Geothermal Systems[J]. Science Report, 2017, 7:17057.
[24] Liu J, Cheng W L. The Stratigraphic and Operating Parameters Influence on Economic Analysis for Enhanced Geothermal Double Wells Utilization System[J]. Energy, 2018, 159:264-276.
[25] 孙致学, 徐轶, 吕抒桓, 等. 增强型地热系统热流固耦合模型及数值模拟[J].中国石油大学学报(自然科学版), 2016, 40(6):109-117. Sun Zhixue, Xu Yi, Lü Shuhuan. A Thermos-Hydro-Mechanical Coupling Model for Numerical Simulation of Enhanced Geothermal Systems[J]. Journal of China University of Petroleum, 2016, 40(6):109-117.
[26] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6):1723-1731. Sun Keming, Zhang Yu. Simulation of Influence of Fracture-Network Spacing on Temperature of HDR Geothermal Reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1723-1731.
[27] 樊冬艳, 孙海, 姚军, 等. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3):798-807. Fan Dongyan, Sun Hai, Yao Jun, et al. Parametric Analysis of Different Injection and Production Well Pattern in Enhanced Geothermal System[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3):797-806.
[1] 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138.
[2] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[3] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[4] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[5] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[6] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[7] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[8] 樊冬艳, 孙海, 姚军, 李华锋, 严侠, 张凯, 张林. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3): 797-806.
[9] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[10] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[11] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[12] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[13] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[14] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[15] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!