吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1182-1188.doi: 10.13278/j.cnki.jjuese.20180313

• 地质工程与环境工程 • 上一篇    

稳定型与负载型FeS修复Cr(Ⅵ)污染地下水的可行性

洪梅1,2, 任璇1,2, 杨慧萍1,2   

  1. 1. 吉林大学新能源与环境学院, 长春 130021;
    2. 吉林大学石油化工污染场地控制与修复技术国家地方联合工程实验室, 长春 130021
  • 收稿日期:2018-11-28 发布日期:2020-07-29
  • 作者简介:洪梅(1972-),女,教授,博士生导师,主要从事污染场地控制与修复方向的研究,E-mail:hongmei@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41530636);水体污染控制与治理科技重大专项(2018ZX07111001)

Remediation of Cr(Ⅵ) Contaminated Groundwater by Stable and Loaded FeS

Hong Mei1,2, Ren Xuan1,2, Yang Huiping1,2   

  1. 1. College of New Energy and Environment, Jilin University, Changchun 130021, China;
    2. National Local Joint Engineering Laboratory of Petrochemical Pollution Site Control and Remediation Technology, Jilin University, Changchun 130021, China
  • Received:2018-11-28 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China(41530636) and Major Scientific and Technological Projects on Water Pollution Control and Government(2018ZX07111001)

摘要: 纳米硫化亚铁(Nano-FeS)粒径小、比表面积大、反应活性高,但易团聚、易氧化的特点使其在地下水修复中的应用受到限制,通过改性可提高Nano-FeS的分散性和稳定性。本文选用羧甲基纤维素钠(CMC)及羟基铝柱撑膨润土(Alb)两种改性剂,制备了稳定型改性的CMC-FeS和负载型的Alb-FeS。分别从分散性、抗沉降性、抗氧化性、反应性和迁移性考察了两种改性Nano-FeS的性能。结果表明:Alb-FeS与CMC-FeS的分散性均较Nano-FeS得到明显改善;3 d后Nano-FeS完全沉降氧化,CMC-FeS沉降3 cm且开始氧化,而Alb-FeS沉降16 cm却未氧化;在相同的实验条件下,Alb-FeS、Nano-FeS、CMC-FeS对Cr (Ⅵ)的去除能力从强到弱,去除率分别是85.16%、84.90%、82.78%。在粗砂、中砂与细砂介质中,3种FeS的迁移能力从强到弱依次为CMC-FeS、Alb-FeS、Nano-FeS;在3种介质中CMC-FeS的最大迁移距离分别是Nano-FeS的6.1倍、6.4倍和3.4倍,而Alb-FeS与Nano-FeS相比迁移性没有明显提高。综合考虑分散性、抗沉降性、稳定性、反应活性及迁移能力,实际应用中宜优先选择CMC-FeS作为Cr (VI)污染地下水的原位修复材料。

关键词: 硫化铁, 羧甲基纤维素钠, 羟基铝柱撑膨润土, 反应性, 迁移性

Abstract: Nanometer iron sulfide (Nano-FeS) has small particle size, large specific surface and high reactivity, but its application in groundwater remediation is limited by its easy agglomeration and oxidation. The dispersion and stability of Nano-FeS can be improved by modification. In this study, two kinds of modifiers, sodium carboxymethyl cellulose (CMC) and pillared bentonite were used to prepare stable modified CMC-FeS and loaded Alb-FeS. The properties of the two modified Nano-FeS were investigated in terms of dispersivity, anti-sedimentation, anti-oxidation, reactivity,and migration. The results show that the dispersivity of Alb-FeS and CMC-FeS were improved obviously compared to Nano-FeS. After three days, Nano-FeS completely precipitated and oxidized, CMC-FeS precipitated 3 cm and began to oxidize, while Alb-FeS precipitated 16 cm without oxidation. Under the same experimental conditions, the removal rate of Alb-FeS,Nano-FeS, and CMC-FeS for Cr(Ⅵ) is 85.16%, 84.90%, and 82.78% respectively, and their removal ability is Alb-FeS > Nano-FeS > CMC-FeS. The migration ability of the three kinds of FeS in the medium of coarse sand, medium sand, and fine sand is CMC-FeS> Alb-FeS> Nano-FeS. The maximum migration distance of CMC-FeS in the three media is 6.1, 6.4 and 3.4 times of that of Nano-FeS, while the mobility of Alb-FeS is not significantly improved compared with that of Nano-FeS. Considering the dispersivity, anti-sedimentation, stability, reactivity, and migration, CMC-FeS should be selected as the in-situ remediation material for Cr (VI) contaminated groundwater in practical application.

Key words: iron sulfide, sodium carboxymethyl cellulose, hydroxyl aluminium pillared bentonite, reactivity, migration

中图分类号: 

  • X523
[1] 李晨桦,陈家玮. 膨润土负载纳米铁去除地下水中六价铬研究[J]. 现代地质,2012, 26(5):932-938. Li Chenhua, Chen Jiawei. Removal of Hexavalent Chromium from Groundwater by Bentonite-Loaded Nano-Iron[J]. Modern Geology, 2012, 26(5):932-938.
[2] 尹丽京,李益民,张璐吉,等. 羟基铝柱撑膨润土负载纳米铁还原Cr(Ⅵ)[J]. 环境科学,2009, 30(4):1055-1059. Yin Lijing, Li Yimin, Zhang Luji, et al. Reduction of Cr(Ⅵ) by Nano-Iron Supported on Hydroxy Aluminum Pillared Bentonite[J]. Environmental Science, 2009, 30(4):1055-1059.
[3] Wang X B, Liu J, Zhao D L, et al. Preparation of CMC-Stablized FeS Nanoparticles and Their Enhanced Performance for Cr(Ⅵ) Removal[J]. Adanced Materials Research, 2011, 287/288/289/290:96-99.
[4] Martine M, Sophie B, Jean E. Removal of Hexalent Chromium from Solutions by Mackinawite Tetragonal FeS[J]. Colloids and Surfaces:A:Physicochemical and Engineering Aspects, 2004, 244(1):77-85.
[5] Gong Y Y, Tang J C, Zhao D Y. Application of Iron Sulfide Particles for Groundwater and Soil Remediation:A Review[J]. Water Research, 2016, 89:309-320.
[6] Chen J, Chen R, Hong M. Influence of pH on Hexavalent Chromium Reduction by Fe(Ⅱ) and Sulfide Compounds[J]. Water Sci Technol, 2015, 72(1):22-28.
[7] Liu Y Y, Xiao W Y, Wang J J, et al. Optimized Synthesis of FeS Nanoparticles with a High Cr(Ⅵ) Removal Capability[J]. Journal of Nanomaterials, 2016, 4:1-9.
[8] He F, Zhao D Y. Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers[J]. Environmental Science and Technology, 2007, 41(17):6216-6221.
[9] Naeim E, Godwin A A, Graeme J, et al. Clay-Supported Nanoscale Zero-Valent Iron Composite Materials for the Remediation of Contaminated Aqueous Solutions:A Review[J]. Chemial Engineering Journal, 2017, 312:336-350.
[10] Zhao X, Liu W, Cai Z Q, et al. An Overview of Preparation and Application of Stabilized Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation[J]. Water Rrsearch,2016, 100:245-266.
[11] 李佳. 硫化亚铁纳米粒子对土壤和地下水中镉的修复研究[D]. 太原:太原科技大学,2015. Li Jia. Rehabilitation of Cadmium in Soil and Groundwater by Ferrous Sulfide Nanoparticles[D]. Taiyuan:Taiyuan University of Science and Technology, 2015.
[12] 刘玲. CMC稳定纳米FeS的制备及其性能研究[D]. 天津:南开大学,2013. Liu Ling. Preparation and Properties of CMC-Stabilized Nano-FeS[D]. Tianjin:Nankai University, 2013.
[13] Luis A G, Helier J M, Ana M G, et al. Development of Mu or Fe Sulfides in the Interlayer Space of Raw and Al-Pillared Bentonite[J]. Applied Clay Science,2018, 157:31-40.
[14] 程伟. 改性膨润土/纳米铁协同去除废水中的重金属污染物[D]. 宁波:宁波大学,2014. Cheng Wei. Removal of Heavy Metal Pollutants from Wastewater by Modified Bentonite/Nano-Iron[D]. Ningbo:Ningbo University, 2014.
[15] Djurdja V K, Dragana D T, Milena R B, et al. Three Different Clay-Supported Nanoscale Zero-Valent Iron Materials for Industrial Azo Dye Degradation:A Comparative Study[J]. Journal of the Taiwan Institute of Chemical Engineers,2014, 45:2451-2461.
[16] 任彩霞. 有机膨润土负载纳米铁处理废水中硝基苯[D]. 杭州:浙江理工大学,2013. Ren Caixia. Treatment of Nitrobenzene in Wastewater by Organobentonite-Loaded Nano-Iron[D]. Hangzhou:Zhejiang Sci-Tech University, 2013.
[17] 洪梅,杨慧萍,陈韶音. 聚合物改性硫化亚铁在饱和多孔介质中的迁移性能[J]. 吉林大学学报(地球科学版),2019,49(4):1121-1128. Hong Mei, Yang Huiping, Chen Shaoyin. Migration of Polymer Modified Ferrous Sulfide in Saturated Porous Media[J]. Journal of Jilin University (Earth Science Edition),2019, 49(4):1121-1128.
[18] Mystriotia C, Papassiopia N, Xenidis A, et al. Column Study for the Evaluation of the Transport Properties of Polyphenol-Coated Nano-Iron[J]. Hazard Mater,2015, 281:64-69.
[19] Etelka T, Marta S. Surface Charge Hereogeneity of Kaolinite in Aqueous Suspension in Comparison with Montmorillonite[J]. Applied Clay Science,2006, 34:105-124.
[1] 董军, 李文德, 陈建隆, 吴玥, 鹿豪杰. 电容去离子化去除地下水中镉的影响因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1129-1136.
[2] 洪梅, 杨慧萍, 陈韶音. 聚合物改性硫化亚铁在饱和多孔介质中的迁移性能[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1121-1128.
[3] 洪梅, 韩旭, 王蔷, 刘璐, 史玉玺. 硫化纳米铁对模拟地下水中Cr(Ⅵ)的去除效果及影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1821-1830.
[4] 张艳, 徐斌, 刘秀花. 陕西省泾惠渠灌区地下水污染与人体健康风险评价[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1451-1464.
[5] 赵勇胜, 陈震, 张佳文, 肖乐乐, 陈瑾. 有色示踪剂模拟槽实验图像分析法[J]. 吉林大学学报(地球科学版), 2018, 48(3): 846-853.
[6] 董军, 徐暖, 刘同喆, 管锐, 邓俊巍. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1): 234-240.
[7] 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829.
[8] 赵晓波,谢雪,李莹,马臻,李绪谦,樊凯. 不同Eh条件下弱透水层中硝酸盐截留能力[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1603-1607.
[9] 白静,赵勇胜,陈子方,孙勇军. 利用Tween80溶液冲洗修复萘污染地下水模拟实验[J]. 吉林大学学报(地球科学版), 2013, 43(2): 552-557.
[10] 刘淼, 陈睿阳, 李广柱, 郎贵林. 微压流化式复合生物反应器的同步脱氮[J]. J4, 2012, 42(3): 832-837.
[11] 康春莉, 何冲, 熊鹰, 刘汉飞, 石文娟, 薛洪海. 典型石油烃组分在地下水中的自然衰减规律[J]. J4, 2012, 42(1): 206-211.
[12] 夏雨波, 杨悦锁, 杜新强, 杨明星. 石油污染场地浅层地下水MNA原位修复潜能及微生物降解效益评估[J]. J4, 2011, 41(3): 831-839.
[13] 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854.
[14] 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846.
[15] 辛欣, 卢文喜, 罗建男, 陈社明. DNAPLs污染含水层多相流数值模拟模型的替代模型[J]. J4, 2011, 41(3): 855-860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!