吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1182-1188.doi: 10.13278/j.cnki.jjuese.20180313
• 地质工程与环境工程 • 上一篇
洪梅1,2, 任璇1,2, 杨慧萍1,2
Hong Mei1,2, Ren Xuan1,2, Yang Huiping1,2
摘要: 纳米硫化亚铁(Nano-FeS)粒径小、比表面积大、反应活性高,但易团聚、易氧化的特点使其在地下水修复中的应用受到限制,通过改性可提高Nano-FeS的分散性和稳定性。本文选用羧甲基纤维素钠(CMC)及羟基铝柱撑膨润土(Alb)两种改性剂,制备了稳定型改性的CMC-FeS和负载型的Alb-FeS。分别从分散性、抗沉降性、抗氧化性、反应性和迁移性考察了两种改性Nano-FeS的性能。结果表明:Alb-FeS与CMC-FeS的分散性均较Nano-FeS得到明显改善;3 d后Nano-FeS完全沉降氧化,CMC-FeS沉降3 cm且开始氧化,而Alb-FeS沉降16 cm却未氧化;在相同的实验条件下,Alb-FeS、Nano-FeS、CMC-FeS对Cr (Ⅵ)的去除能力从强到弱,去除率分别是85.16%、84.90%、82.78%。在粗砂、中砂与细砂介质中,3种FeS的迁移能力从强到弱依次为CMC-FeS、Alb-FeS、Nano-FeS;在3种介质中CMC-FeS的最大迁移距离分别是Nano-FeS的6.1倍、6.4倍和3.4倍,而Alb-FeS与Nano-FeS相比迁移性没有明显提高。综合考虑分散性、抗沉降性、稳定性、反应活性及迁移能力,实际应用中宜优先选择CMC-FeS作为Cr (VI)污染地下水的原位修复材料。
中图分类号:
[1] 李晨桦,陈家玮. 膨润土负载纳米铁去除地下水中六价铬研究[J]. 现代地质,2012, 26(5):932-938. Li Chenhua, Chen Jiawei. Removal of Hexavalent Chromium from Groundwater by Bentonite-Loaded Nano-Iron[J]. Modern Geology, 2012, 26(5):932-938. [2] 尹丽京,李益民,张璐吉,等. 羟基铝柱撑膨润土负载纳米铁还原Cr(Ⅵ)[J]. 环境科学,2009, 30(4):1055-1059. Yin Lijing, Li Yimin, Zhang Luji, et al. Reduction of Cr(Ⅵ) by Nano-Iron Supported on Hydroxy Aluminum Pillared Bentonite[J]. Environmental Science, 2009, 30(4):1055-1059. [3] Wang X B, Liu J, Zhao D L, et al. Preparation of CMC-Stablized FeS Nanoparticles and Their Enhanced Performance for Cr(Ⅵ) Removal[J]. Adanced Materials Research, 2011, 287/288/289/290:96-99. [4] Martine M, Sophie B, Jean E. Removal of Hexalent Chromium from Solutions by Mackinawite Tetragonal FeS[J]. Colloids and Surfaces:A:Physicochemical and Engineering Aspects, 2004, 244(1):77-85. [5] Gong Y Y, Tang J C, Zhao D Y. Application of Iron Sulfide Particles for Groundwater and Soil Remediation:A Review[J]. Water Research, 2016, 89:309-320. [6] Chen J, Chen R, Hong M. Influence of pH on Hexavalent Chromium Reduction by Fe(Ⅱ) and Sulfide Compounds[J]. Water Sci Technol, 2015, 72(1):22-28. [7] Liu Y Y, Xiao W Y, Wang J J, et al. Optimized Synthesis of FeS Nanoparticles with a High Cr(Ⅵ) Removal Capability[J]. Journal of Nanomaterials, 2016, 4:1-9. [8] He F, Zhao D Y. Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers[J]. Environmental Science and Technology, 2007, 41(17):6216-6221. [9] Naeim E, Godwin A A, Graeme J, et al. Clay-Supported Nanoscale Zero-Valent Iron Composite Materials for the Remediation of Contaminated Aqueous Solutions:A Review[J]. Chemial Engineering Journal, 2017, 312:336-350. [10] Zhao X, Liu W, Cai Z Q, et al. An Overview of Preparation and Application of Stabilized Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation[J]. Water Rrsearch,2016, 100:245-266. [11] 李佳. 硫化亚铁纳米粒子对土壤和地下水中镉的修复研究[D]. 太原:太原科技大学,2015. Li Jia. Rehabilitation of Cadmium in Soil and Groundwater by Ferrous Sulfide Nanoparticles[D]. Taiyuan:Taiyuan University of Science and Technology, 2015. [12] 刘玲. CMC稳定纳米FeS的制备及其性能研究[D]. 天津:南开大学,2013. Liu Ling. Preparation and Properties of CMC-Stabilized Nano-FeS[D]. Tianjin:Nankai University, 2013. [13] Luis A G, Helier J M, Ana M G, et al. Development of Mu or Fe Sulfides in the Interlayer Space of Raw and Al-Pillared Bentonite[J]. Applied Clay Science,2018, 157:31-40. [14] 程伟. 改性膨润土/纳米铁协同去除废水中的重金属污染物[D]. 宁波:宁波大学,2014. Cheng Wei. Removal of Heavy Metal Pollutants from Wastewater by Modified Bentonite/Nano-Iron[D]. Ningbo:Ningbo University, 2014. [15] Djurdja V K, Dragana D T, Milena R B, et al. Three Different Clay-Supported Nanoscale Zero-Valent Iron Materials for Industrial Azo Dye Degradation:A Comparative Study[J]. Journal of the Taiwan Institute of Chemical Engineers,2014, 45:2451-2461. [16] 任彩霞. 有机膨润土负载纳米铁处理废水中硝基苯[D]. 杭州:浙江理工大学,2013. Ren Caixia. Treatment of Nitrobenzene in Wastewater by Organobentonite-Loaded Nano-Iron[D]. Hangzhou:Zhejiang Sci-Tech University, 2013. [17] 洪梅,杨慧萍,陈韶音. 聚合物改性硫化亚铁在饱和多孔介质中的迁移性能[J]. 吉林大学学报(地球科学版),2019,49(4):1121-1128. Hong Mei, Yang Huiping, Chen Shaoyin. Migration of Polymer Modified Ferrous Sulfide in Saturated Porous Media[J]. Journal of Jilin University (Earth Science Edition),2019, 49(4):1121-1128. [18] Mystriotia C, Papassiopia N, Xenidis A, et al. Column Study for the Evaluation of the Transport Properties of Polyphenol-Coated Nano-Iron[J]. Hazard Mater,2015, 281:64-69. [19] Etelka T, Marta S. Surface Charge Hereogeneity of Kaolinite in Aqueous Suspension in Comparison with Montmorillonite[J]. Applied Clay Science,2006, 34:105-124. |
[1] | 董军, 李文德, 陈建隆, 吴玥, 鹿豪杰. 电容去离子化去除地下水中镉的影响因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1129-1136. |
[2] | 洪梅, 杨慧萍, 陈韶音. 聚合物改性硫化亚铁在饱和多孔介质中的迁移性能[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1121-1128. |
[3] | 洪梅, 韩旭, 王蔷, 刘璐, 史玉玺. 硫化纳米铁对模拟地下水中Cr(Ⅵ)的去除效果及影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1821-1830. |
[4] | 张艳, 徐斌, 刘秀花. 陕西省泾惠渠灌区地下水污染与人体健康风险评价[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1451-1464. |
[5] | 赵勇胜, 陈震, 张佳文, 肖乐乐, 陈瑾. 有色示踪剂模拟槽实验图像分析法[J]. 吉林大学学报(地球科学版), 2018, 48(3): 846-853. |
[6] | 董军, 徐暖, 刘同喆, 管锐, 邓俊巍. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1): 234-240. |
[7] | 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829. |
[8] | 赵晓波,谢雪,李莹,马臻,李绪谦,樊凯. 不同Eh条件下弱透水层中硝酸盐截留能力[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1603-1607. |
[9] | 白静,赵勇胜,陈子方,孙勇军. 利用Tween80溶液冲洗修复萘污染地下水模拟实验[J]. 吉林大学学报(地球科学版), 2013, 43(2): 552-557. |
[10] | 刘淼, 陈睿阳, 李广柱, 郎贵林. 微压流化式复合生物反应器的同步脱氮[J]. J4, 2012, 42(3): 832-837. |
[11] | 康春莉, 何冲, 熊鹰, 刘汉飞, 石文娟, 薛洪海. 典型石油烃组分在地下水中的自然衰减规律[J]. J4, 2012, 42(1): 206-211. |
[12] | 夏雨波, 杨悦锁, 杜新强, 杨明星. 石油污染场地浅层地下水MNA原位修复潜能及微生物降解效益评估[J]. J4, 2011, 41(3): 831-839. |
[13] | 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854. |
[14] | 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846. |
[15] | 辛欣, 卢文喜, 罗建男, 陈社明. DNAPLs污染含水层多相流数值模拟模型的替代模型[J]. J4, 2011, 41(3): 855-860. |
|