吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 465-479.doi: 10.13278/j.cnki.jjuese.20190250

• 沉积盆地分析 • 上一篇    下一篇

松嫩平原南缘现代沉积物磁化率、粒度、色度特征及古气候环境意义

张新荣1,2,3, 平帅飞1,2,3, 焦洁钰1,2,3, 刘恩豪1   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 东北亚生物演化与环境教育部重点实验室(吉林大学), 长春 130026;
    3. 吉林省油页岩与共生能源矿产重点实验室, 长春 130061
  • 收稿日期:2019-11-26 出版日期:2020-03-26 发布日期:2020-03-31
  • 作者简介:张新荣(1975-),女,副教授,博士,主要从事现代沉积学及第四纪地质学研究,E-mail:zhangxr@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41371202);吉林大学大学生创新训练国家级项目(2018A2208)

Characteristics of Magnetic Susceptibility, Grain Size and Chromaticity of Modern Sediments in the Southern Margin of Songnen Plain and Their Paleoclimate Environment Significance

Zhang Xinrong1,2,3, Ping Shuaifei1,2,3, Jiao Jieyu1,2,3, Liu Enhao1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Key Laboratory for Evolution of Past Life and Environment in Northeast Asia(Jilin University), Ministry of Education, Changchun 130026, China;
    3. Key Laboratory of Oil Shale and Coexistent Energy Minerals of Jilin Province, Changchun 130061, China
  • Received:2019-11-26 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by National Natural Science Foundation of China (41371202) and Students Innovative Training National Project of Jilin University(2018A2208)

摘要: 深入了解松嫩平原第四纪古气候演化过程,对本区黑土退化的气候影响因素研究有重要理论意义。选择松嫩平原南缘大黑山地垒长春—四平段郭家(GJ)、湾沟(WG)、平安屯(PA)、腰分水岭旁(YP)、西地(XD)、胡家甸(H)、肖家(XJ)7个现代沉积剖面进行磁化率、粒度和色度分析。结果显示:各剖面沉积物磁化率多表现为干燥时期较大、湿润时期较小、寒冷阶段较大、温暖适宜阶段较小的特点。颜色对磁化率影响较大,不同颜色砂或砂质黏土的磁化率从大到小依次为红褐色→浅黄色或灰绿色→灰黑色。碳酸盐岩或灰岩物源的存在,使沉积物色度和磁化率之间的关系相对复杂。磁化率会随沉积物粒度增大而增大,冻融风化和降雨增多导致沉积物粒度增大,使磁化率升高;但温暖适宜时期,磁化率受物源供给量的减小而减小。磁化率、粒度和色度三指标综合反映出研究区早更新世寒冷干燥→中更新世冷湿—暖湿—冷湿→晚更新世寒冷较湿润的古气候环境演化过程。

关键词: 磁化率, 粒度, 色度, 古气候环境, 松嫩平原南缘

Abstract: A better understanding of the Quaternary paleoclimate process in Songnen plain is of great theoretical significance for the study of the climate-influencing factors on the black soil degradation in this area. Seven sediments sections were collected from Guojia (GJ), Wangou (WG), Pingantun (PA), Yaofenshuiling (YP), Xidi (XD), Hujiadian (H),and Xiaojia (XJ) in the Changchun-Siping segment of Daheishan horst, the south margin of Songnen plain. The magnetic susceptibility, grain size,and chromaticity analyses indicate that the magnetic susceptibility of sediments is mostly characterized by increasing during drying or cold period,and decreasing during wet or warmer period. The color has a great influence on the magnetic susceptibility. The magnetic susceptibility of reddish brown sand or sandy clay is higher than that of light yellow or grayish green sand or sandy clay; while the magnetic susceptibility of light yellow or grayish green sand or sandy clay is higher than that of grayish black sand or sandy clay. The presence of carbonate or limestone in the source area makes the relationship between sediment chromaticity and magnetic susceptibility relatively complex. On the studied profiles, the magnetic susceptibility increases with the increase of grain size. Freeze-thaw or rainy can increase the grain size, and cause high magnetic susceptibility, however, in a warmer period, the magnetic susceptibility is reduced by the decrease of source supply. The three indicators comprehensively reflect that the seven sections experienced a paleoclimate environment process of a cold and dry in Early Pleistocene, cold and wet-warm and wet-cold and dry in Middle Pleistocene, and cool and wet in Late Pleistocene.

Key words: magnetic susceptibility, grain size, chromaticity, paleoclimate environment, the southern margin of Songnen plain

中图分类号: 

  • P532
[1] 裘善文,张柏,王志春.中国东北平原西部荒漠化现状、成因及其治理途径研究[J].第四纪研究, 2005, 25(1):63-73. Qiu Shanwen,Zhang Bai,Wang Zhichun. Analyses on Current Situation Causes of Formation, and Way of Management of Desertification in Western Northeast Plain of China[J]. Quaternary Sciences, 2005,25(1):63-73.
[2] 裘善文,李风华.洮、霍两河下游地区土地沙漠化成因及治理模式研究[J].中国沙漠, 2002,22(1):52-58. Qiu Shanwen, Li Fenghua. Origin and Control Pattern of Desertification in Lower Reaches of Both Taohe River and Huolinhe River[J]. Journal of Desert Research,2002,22(1):52-58.
[3] 裘善文,夏玉梅,汪佩芳,等.松辽平原更新世地层及其沉积环境的研究[J].中国科学:B辑,1988,7(4):431-441. Qiu Shanwen, Xia Yumei, Wang Peifang, et al. Study on the Plain Strata and Their Depositional Environment on the Songliao Plain of Northeast China[J]. Science in China:Series B, 1988, 7(4):431-441.
[4] 裘善文,李取胜,夏玉梅. 东北平原西部沙地古土壤与全新世环境变迁[J].第四纪研究,1992, 17(3):224-232. Qiu Shanwen, Li Qusheng, Xia Yumei. Paleosols of Sandy Lands and Environmental Changes in the Western Plain of Northeast China During Holocene[J]. Quaternary Sciences, 1992, 17(3):224-232.
[5] 魏丹,孟凯.中国东北黑土[M].北京:中国农业出版社,2017. Wei Dan, Meng Kai. Black Soil in Northeast China[M]. Beijing:China Agriculture Press, 2017.
[6] 裘善文,姜鹏,李风华,等. 中国东北晚冰期以来自然环境演变的初步探讨[J]. 地理学报,1981,36(3):315-327. Qiu Shanwen, Jiang Peng, Li Fenghua, et al. A Preliminary Study on the Evolution of Natural Environment in Northeast China Since the Late Glaciations[J]. Acta Geographica Sinica, 1981,36(3):315-327.
[7] 林年丰,汤洁,卞建民,等.东北平原第四纪环境演化与荒漠化问题[J].第四纪研究,1999,19(5):448-455. Lin Nianfeng, Tang Jie, Bian Jianmin, et al. The Quaternary Environmental Evolution and the Problem of Desertification in Northeast Plain[J]. Quaternary Sciences, 1999, 19(5):448-455.
[8] 林年丰,汤洁.东北平原第四纪环境演变与土地盐碱化、荒漠化的成因分析[J].第四纪研究,2005,25(4):474-483. Lin Nianfeng, Tang Jie. Study on the Environment Evolution and the Analysis of Causes to Land Salinization and Desertification[J]. Quaternary Sciences, 2005,25(4):474-483.
[9] 殷志强,秦小光,刘嘉麒,等. 扎龙湿地的形成背景及其生态环境意义[J]. 地理科学进展, 2006,25(3):32-40. Yin Zhiqiang, Qin Xiaoguang, Liu Jiaqi, et al. Formation Background of the Zhalong Wetland and Its Eco-Environmental Significance[J]. Progress in Geography, 2006, 25(3):32-40.
[10] 崔明,张旭东,蔡强国,等.东北典型黑土区气候、地貌演化与黑土发育关系[J].地理研究, 2008,27(3):527-535. Cui Ming, Zhang Xudong, Cai Qiangguo, et al. Relationship Between Black Soil Development and Climate Change and Geomorphological Evolution in Northeast China[J]. Geographical Research, 2008,27(3):527-535.
[11] 夏玉梅,汪佩芳,王曼华. 哈尔滨黄山剖面孢粉组合的初步研究[J]. 地理科学, 1983,3(2):183-187. XiaYumei, Wang Peifang, Wang Manhua. Preliminary Research on Spore-Pollen Association of the Section of Huangshan in Haerbin[J]. Ascientia Geographica Sinica, 1983,3(2):183-187.
[12] 夏玉梅,汪佩芳. 松嫩平原晚第三纪-更新世孢粉组合及古植被与古气候的研究[J]. 地理学报,1987, 42(2):165-178. Xia Yumei, Wang Peifang. The Paleobotany and Paleoclimate in the Songnen Plain:A Study on the Late Tertiary-Pleistocene Spore Pollen Assemblages[J]. Acta Geographica Sinica, 1987, 42(2):165-178.
[13] 陆继龙,周永昶,周云轩.吉林省黑土某些微量元素环境地球化学特征[J].土壤通报, 2002,33(5):365-368. Lu Jilong, Zhou Yongchang, Zhou Yunxuan. Environmental Geochemical Characteristics of Some Microelements in the Black Soil of Jilin Province[J]. Chinese Journal of Soil Science, 2002,33(5):365-368.
[14] 刘景双,于君宝,王金达,等.松辽平原黑土有机碳含量时空分异规律[J].地理科学,2003,23(6):668-673. Liu Jingshuang, Yu Junbao, Wang Jinda, et al. Temporal-Spatial Variation Law of Organic Carbon Content in Typical Black Soil on Songliao Plain[J]. Scientia Geographica Sinica, 2003,23(6):668-673.
[15] 汪景宽,张旭东,王铁宇,等.黑土土壤质量演变初探:III:不同地区黑土主要微量元素状况及其评价[J].沈阳农业大学学报, 2002,33(6):420-424. Wang Jingkuan, Zhang Xudong, Wang Tieyu, et al. An Approach to the Changes of Black Soil Quality:III:Changes of the Indices of Black Soil with Year(s) of Reclamation[J]. Journal of Shenyang Agricultural University, 2002, 33(6):420-424.
[16] David M B, McIsaac G F, Darmody R G, et al. Long-Term Changes in Mollisol Organic Carbon and Nitrogen[J]. Journal of Environmental Quality, 2011, 40:280-285.
[17] Rodriguez S, Videla C D, Zamuner E C, et al. Changes on the Chemical Properties of a Mollisol Soil Under Different Management Systems in the Pampean Region, Argentina[J]. Chilean Journal of Agricultural & Animal Sciences, 2015, 31:137-148.
[18] Pasquini A I, Campodonico V A, Rouzaut S, et al. Geochemistry of a Soil Catena Developed from Loess Deposits in a Semiarid Environment, Sierra Chica de Córdoba, Central Argentina[J]. Geoderma, 2017, 295:53-68.
[19] 申聪颖,赵兰坡,刘杭,等.不同母质发育的东北黑土的黏粒矿物组成研究[J].矿物学报,2013,33(3):382-388. Shen Congying, Zhao Lanpo, Liu Hang, et al. A Study on Clay Minerals from Different Parent Material of Black Soil[J]. Acta Mineralogica Sinica, 2013,33(3):382-388.
[20] Hounslow M W, Maher B A. Source of the Climate Signal Recorded by Magnetic Susceptibility Variations in Indian Ocean Sediments[J]. Journal of Geophysical Research, 1999, 104:5047-5061.
[21] Stage M. Magnetic Susceptibility as Carrier of a Climatic Signal in Chalk[J]. Earth and Planetary Science Letters, 2001, 188:17-27.
[22] Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the Inner Shelf of the East China Sea:Magnetic Properties, Diagenesis and Paleoclimate Implications[J]. Marine Geology, 2009, 268:34-42.
[23] Dai S, Zhu Q, Huang Y, et al. Early Cretaceous Climate Changes Recorded in Magnetic Susceptibility and Color Index Variations of the Lower Liupanshan Group, Central China[J]. Acta Geologica Sinica, 2016, 3:1011-1023.
[24] Xie X, Xian F, Wu Z, et al. Asian Monsoon Variation Over the Late Neogene-Early Quaternary Recorded by Anisotropy of Magnetic Susceptibility (AMS) from Chinese Loess[J]. Quaternary International, 2016, 399:183-189.
[25] 郑妍. 东海陆架内泥质沉积的磁学特征及古环境意义[D]. 上海:同济大学,2010. Zheng Yan. Magnetic Properties of the Mud Sediments from East China Sea Inner Shelf and Paleoenvironmental Implications[D]. Shanghai:Tongji University, 2010.
[26] Gudadhe S S, Sangode S J, Patil S K, et al. Pre-and Post-Monsoon Variations in the Magnetic Susceptibilities of Soils of Mumbai Metropolitan Region:Implications to Surface Redistribution of Urban Soils Loaded with Anthropogenic Particulates[J]. Environmental Earth Sciences, 2012, 67(3):813-831.
[27] Da Silva A C. Whalen M T, Hladil J, et al. Magnetic Susceptibility Application:A Window onto Ancient Environments and Climatic Variations:Foreword[J]. Geological Society, 2015, 414:1-13.
[28] Ellwood B B, Crick R E, Fernandez J L G A, et al. Global Correlation Using Magnetic Susceptibility Data from Lower Devonian Rocks[J]. Geology, 2001, 29(7):583-586.
[29] Crick R E, Ellwood B B, Hladile J, et al. Magnetostratigraphy Susceptibility of the Pridolian-Lochkovian (Silurian-Devonian) GSSP (Klonk, Czech Republic) and a Coeval Sequence in Anti-Atlas Morocco[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167:73-100.
[30] Torrent J, Barrón V, Liu Q. Magnetic Enhancement Is Linked to and Precedes Hematite Formation in Aerobic Soil[J]. Geophysical Research Letters, 2006, 33(2):1-4.
[31] 胡守云,吉磊,王苏民,等. 呼伦湖地区扎费诺尔晚第四纪湖泊沉积物的磁化率变化及其影响因素[J]. 湖泊科学, 1995, 7(1):33-40. Hu Shouyun, Ji Lei, Wang Sumin, et al. Magnetic Susceptibility of the Late Quaternary Lacustrine Sediments and Its Influence Factors in Julanur, Hulun Lake Area[J]. Journal of Lake Sciences, 1995, 7(1):33-40.
[32] Snowball I, Thompson R. The Occurrence of the Granitite in Sediments from Loch Lomond[J]. J Quatern Sci, 1988, 3:121-125.
[33] Snowball I. Gyroremanent Magnetization and the Magnetic Properties of Greigite-Bearing Clays in Southern Sweden[J]. Geophys J Int, 1997, 129:624-636.
[34] Ariztegui D, Dobson J. Magnetic Investigation of Framboidal Greigite Formation:A Record of Anthropogenic Environmental Changes in Eutrophic Lake St, Moritz, Switzerland[J]. Holocene, 1996, 6:235-241.
[35] Jelinwski A, Tucholka P, Gasse F, et al. Mineralm Agnetic Record of Environment in Late Pleistocene and Holocene Sediments, Lake Manas, Xinjiang, China[J]. Geophys, Res, Lett, 1995, 22:953-956.
[36] Jelinwski A, Tucholka P, Wieckowski K. Magnetic Properties of Sediments in a Polish Lake:Evidence of a Relation Between the Rock-Magnetic Record and Environmental Changes in Late Pleistocene and Holocene Sediments[J]. Geophys J Int, 1997, 129:727-736.
[37] Klovan J E. The Use of Factor Determining Depositional Environments from Grain Size Distributions[J]. Journal of Sedimentary Petrology, 1966, 36:115-125.
[38] 袁红旗,王蕾,于英华,等.沉积学粒度分析方法综述[J].吉林大学学报(地球科学版),2019, 49(2):380-393. Yuan Hongqi, Wang Lei, Yu Yinghua, et al. Review of Sedimentary Grain Size Analysis Methods[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2):380-393.
[39] Resende M. Mineralogy, Chemistry, Morphology and Geomorphology of Some Soils of the Central Plateau Brazil[D]. West Lafayette:Purdue University, 1976.
[40] 杨胜利,方小敏,李吉均,等.表土颜色和气候定性至半定量关系研究[J].中国科学:D辑:地球科学, 2001,31(增刊1):175-181. Yang Shengli, Fang Xiaomin, Li Jijun, et al. Transformation Functions of Soil Color and Climate[J]. Science in China:Series D:Earth Science, 2001,31(Sup. 1):175-181.
[41] Helmke J P, Schulz M, Bauch H A. Sediment-Color Record from the Northeast Atlantic Reveals Patterns of Millennial-Scale Climate Variability During the Past 500000 Years[J]. Quaternary Research, 2002, 57(1):49.
[42] 吴艳宏,李世杰.湖泊沉积物色度在短尺度古气候研究中的应用[J].地球科学进展,2004,19(5):789-792. Wu Yanhong, Li Shijie. Significance of Lake Sediment Color for Short Time Scale Climate Variation[J]. Advance in Earth Sciences, 2004, 19(5):789-792.
[43] 陈一萌,陈兴盛,宫辉力,等. 土壤颜色:一个可靠的气候变化代用指标[J]. 干旱区地理, 2006, 29(3):309-314. Chen Yimeng, Chen Xingsheng, Gong Huili, et al. Soil Color:A New Sensitive Indicator for Climatic Change[J]. Arid Land Geography, 2006, 29(3):309-314.
[44] 方洪宾,赵福岳,姜琦刚,等.松辽平原第四纪地质环境与黑土退化[M].北京:地质出版社, 2009:5-57. Fang Hongbin, Zhao Fuyue, Jiang Qigang, et al. Quaternary Geological Environment and Black Soil Degradation in Songliao Plain[M]. Beijing:Geological Publishing House, 2009:5-57.
[45] 吉林省土壤肥料总站.吉林土壤[M].北京:中国农业出版社,1998. The General Station of Soil Fertilizer of Jilin Province. Jilin Soil[M]. Beijing:China Agricultural Press,1998.
[46] 吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988. Resource Bureau of Jilin Province. The Regional Geology Records in Jilin Province[M]. Beijing:Geological Publishing House,1988.
[47] 周琳.东北气候[M].北京:气象出版社,1991. Zhou Lin. Climate in Northeast China[M]. Beijing:China Meteorological Press, 1991.
[48] 鲍锟山,贾琳,王国平. 长白山泥炭沼泽磁化率特征及其环境意义[J]. 湿地科学, 2009,7(4):321-326. Bao Kunshan, Jia Lin, Wang Guoping. Characteristic and Environment Significance of Magnetic Susceptibility of Peat Bog Sediments in Changbai Mountains[J]. Wetland Science, 2009,7(4):321-326.
[49] 李永涛,郭高山,顾延生,等. 钢厂周边污染土壤的电性与磁性特征及其环境意义[J].吉林大学学报(地球科学版),2017,47(5):1543-1551. Li Yongtao, Guo Gaoshan, Gu Yansheng, et al. Electric and Magnetic Properties of Contaminated Soil Around a Steel Plant as Well as Their Environmental Significance[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(5):1543-1551.
[50] 卢升高,俞劲炎,章明奎,等.长江中下游第四纪沉积物发育土壤磁性增强的环境磁学机制[J].沉积学报,2000, 18(3):336-341. Lu Shenggao, Yu Jinyan, Zhang Mingkui, et al. Environmental Magnetism of Magnetic Enhancement for Soils Formed on Quaternary Sediments in Yangtze River Valley[J]. Acta Sedimentologica Sinica, 2000, 18(3):336-341.
[51] 邓成龙,刘青松,潘永信,等.中国黄土环境磁学[J].第四纪研究, 2007,27(2):193-209. Deng Chenglong, Liu Qingsong, Pan Yongxin, et al. Environmental Magnetism of Chinese Loess-Paleosol Sequences[J]. Quternary Science, 2007,27(2):193-209.
[52] Torrent J,Barrón V,Liu Q S.Magnetic Enhancement Is Linked to and Precedes Hematite Formation in Aerobic Soil[J]. Geophysical Research Letters, 2006,33(2):1-4.
[53] 谷永建,李玉梅,韩龙,等.中国东部表土磁化率与现代气候因子的关系及其环境意义[J].中国科学院大学学报, 2019,36(4):498-509. Gu Yongjian, Li Yumei, Han Long, et al. Relationships Between Surface Soil Magnetic Susceptibility and Modern Climatic Factors in Eastern China and Their Environmental Significance[J].Journal of University of Chinese Academy of Sciences, 2019,36(4):498-509.
[54] Deng C, Zhu R, Jackson M J, et al. Variability of the Temperature-Dependent Susceptibility of the Holocene Eolian Deposits in the Chinese Loess Plateau:A Pedogenesis Indicator[J]. Physics and Chemistry of the Earth:Part A:Solid Earth and Geodesy, 2001, 26:873-878.
[55] 赵国永,刘秀铭,吕镔,等.全新世黄土记录的古气候演化及磁化率和粒度参数灵敏性探讨[J].第四纪研究,2012,32(4):777-784. Zhao Guoyong, Liu Xiuming, Lü Bin, et al. The Paleoclimatic Evolution Recorded by Holocene Loess and Discussion on the Parameter Sensitivity of Magnetic Susceptibility and Median Particle Diameter[J]. Quaternary Sciences, 2012,32(4):777-784.
[56] 王秋兵,蒋卓东,孙仲秀.中国北方第四纪黄土发育土壤铁锰结核形成环境及空间分布[J].土壤学报,2019,56(2):288-297. Wang Qiubing, Jiang Zhuodong, Sun Zhongxiu. Distribution and Formation Environment of Fe-Mn Nodules in Soils Derived from Quaternary Loess in North China[J]. Acta Pedologica Sinica, 2019,56(2):288-297.
[57] 於修龄.土壤团聚体/铁锰结核的三维结构、形成过程及其环境意义[D].杭州:浙江大学,2015. Yu Xiuling. Three-Dimensional Structurce,Forming Process and Environmental Significance of Soil Aggregates and Fe-Mn Nodules[D]. Hangzhou:Zhejiang University,2015.
[58] 裘善文,夏玉梅,李凤华,等.松辽平原第四纪中期古地理研究[J].科学通报,1984,29(3):172-174. Qiu Shanwen, Xia Yumei, Li Fenghua, et a1.Research on Middle Quaternary Palaeogeography in Songliao Plain[J].Chinese Science Bulletin,1984,29(3):172-174.
[59] 徐新文,强小科,安芷生,等.鹤庆盆地湖相岩心磁化率记录及其古环境意义[J].地质力学学报,2010,16(4):372-382. Xu Xinwen, Qiang Xiaoke, An Zhisheng, et al. Magnetic Susceptibility of Heqing Drill Core and Its Palaeoenvironmental Implications[J]. Journal of Geomechanics, 2010,16(4):372-382.
[60] 杨士雄,郑卓,宗永强,等.田洋玛珥湖中更新世以来磁化率特征及其环境意义[J].中山大学学报(自然科学版),2012,51(3):121-127. Yang Shixiong, Zheng Zhuo, Zong Yongqiang, et al. Characteristics and Environmental Significance of Magnetic Susceptibility of the Tianyang Maar Lake Since Middle Pleistocene[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012,51(3):121-127.
[61] Peck J A, King J W, Colman S M, et al. A Rock-Magnetic Record from Lake Baikal, Siberia:Evidence for Late Quaternary Climate Change[J]. Earth and Planetary Science Letters, 1994, 122:221-238.
[62] Hu S, Goddu S, Appel E, et al. Wang Palaeoclimatic Changes over the Past 1 Million Years Derived from Lacustrine Sediments of Heqing Basin (Yunnan, China)[J]. Quaternary International, 2005,136(1):123-129.
[63] Evans M E, Heller F, Bloemendal J B, et al. Natural Magnetic Archives of Past Global Change[J]. Surveys in Geophysics, 1997, 18:183-196.
[64] 丁大林,张训华,于俊杰,等. 浙闽泥质地区全新世物源和古气候演化研究进展[J].吉林大学学报(地球科学版),2019,49(1):178-195. Ding Dalin, Zhang Xunhua, Yu Junjie, et al. Progress in Sedimentary Sources and Palaeoclimate Evolution in Zhejiang-Fujian Mud Area in Holocene[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1):178-195.
[1] 张德军, 张健, 郑月娟, 陈树旺, 苏飞, 黄欣, 张海华, 甄甄. 大兴安岭南部二叠纪-三叠纪之交孢粉化石及古气候环境分析[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1350-1361.
[2] 袁红旗, 王蕾, 于英华, 张冬杰, 许凤鸣, 刘海涛. 沉积学粒度分析方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(2): 380-393.
[3] 赵军, 代新雲, 古莉, 祁新忠, 陈伟中. 基于粒度控制的复杂储层渗透性建模方法[J]. 吉林大学学报(地球科学版), 2016, 46(1): 279-285.
[4] 李勇, 李海燕, 赵应权. 沉积物粒度特征及其对环境的指示意义——以濠河为例[J]. 吉林大学学报(地球科学版), 2015, 45(3): 918-925.
[5] 杨忠平,张强,张梁,李达,卢文喜,辛欣. 长春市城区近地表灰尘粒度特征及其环境意义[J]. 吉林大学学报(地球科学版), 2014, 44(1): 319-327.
[6] 黄勇, 朱丽红, 殷琨, 任红. 潜孔锤反循环钻进岩屑粒度分布规律[J]. J4, 2012, 42(4): 1119-1124.
[7] 任收麦, 孟婧瑶, 林源贤, 姜文利, 乔德武, 何明, 左天文. 敦煌盆地早更新世沉积物粒度分析、36Cl定年及其构造隆升意义[J]. J4, 2011, 41(5): 1380-1388.
[8] 黄芮, 陈剑平, 李会中, 张晨, 张文, 徐佩华. 基于φ值粒度成分分析的泥石流动力特性[J]. J4, 2011, 41(1): 182-187.
[9] 刘招君, 孙平昌, 杜江峰, 方石, 陈永成, 贾建亮, 孟庆涛. 汤原断陷古近系扇三角洲沉积特征[J]. J4, 2010, 40(1): 1-8.
[10] 赵庆乐, 张世红, 韩以贵, 李海燕, 董进, 张元厚. 磁化率各向异性椭球三维图形显示的VB.net实现[J]. J4, 2009, 39(6): 1141-1145.
[11] 李秉成,胡培华,王艳娟. 关中泾阳塬全新世黄土剖面磁化率的古气候阶段划分[J]. J4, 2009, 39(1): 99-0106.
[12] 李智佩,岳乐平,薛祥煦,杨利荣,王 岷,聂浩刚,王飞跃,孙 虎. 毛乌素沙地沉积物粒度特征与土地沙漠化[J]. J4, 2007, 37(3): 578-0586.
[13] 谢远云,李长安,王秋良,殷鸿福. 江汉平原江陵湖泊沉积物粒度特征及气候环境意义[J]. J4, 2007, 37(3): 570-0577.
[14] 张艳彬,王 玉,杨忠芳,陈岳龙. 成都经济区土壤磁化率特征及其环境意义[J]. J4, 2007, 37(3): 597-0604.
[15] 赵安平,王 清,李 杨. 季节冻土区路基土粒度成分的分形特征[J]. J4, 2006, 36(04): 583-587.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!