吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 973-990.doi: 10.13278/j.cnki.jjuese.20200182

• 地质与资源 • 上一篇    下一篇

深层碎屑岩自生矿物成因机理及其对储层物性的影响——以渤海歧南断阶带侏罗系为例

郭颖, 杨波, 韩自军, 李果营, 吴庆勋, 叶涛   

  1. 中海石油(中国)有限公司天津分公司, 天津 300459
  • 收稿日期:2020-08-06 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:郭颖(1988-),男,工程师,主要从事沉积储层研究和海上油气勘探工作,E-mail:guoying8832@163.com
  • 基金资助:
    国家科技重大专项(2016ZX05024-003)

Genesis Mechanism of Authigenic Minerals in Deep Clastic Rocks and Its Influence on Reservoir Physical Property: An Example from the Jurassic in Qinan Fault Step Belt, Bohai Sea, China

Guo Ying, Yang Bo, Han Zijun, Li Guoying, Wu Qingxun, Ye Tao   

  1. Tianjin Branch, CNOOC China Limited, Tianjin 300459, China
  • Received:2020-08-06 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Science and Technology Major Project (2016ZX05024-003)

摘要: 自生矿物特征和成因机理对深层碎屑岩储层物性具有重要影响。以渤海海域歧南断阶带侏罗系为例,通过岩心、薄片、扫描电镜、电子探针、同位素、包裹体、X衍射分析等技术手段,对研究区侏罗系深层碎屑岩储层自生矿物的类型、特征、成因机理及对优质储层发育的控制作用进行研究。结果表明:研究区侏罗系碎屑岩属于中孔-低渗储层,非均质性强;主要自生矿物类型为硅质矿物、碳酸盐矿物、黏土矿物3类;早期形成的硅质石英衬垫和碳酸盐胶结物控制了孔隙的发育和演化,沿颗粒表面分布的早期硅质石英衬垫有效抑制了后期石英加大生长,并增强了岩石的抗压能力,有利于原生孔隙保存;早期碳酸盐胶结物增强了储层抗压实能力,并为后期储层遭受溶蚀形成溶蚀孔提供了物质基础,有利于高孔隙储层形成;黏土矿物控制了储层渗透率差异,储层渗透率与自生高岭石体积分数呈正相关性,较高渗透率储层分布于侏罗系中段高岭石富集带内。研究区侏罗系碎屑岩发育原生孔隙体积分数高、微晶石英衬垫发育的Ⅰ类有利储层和粒间溶蚀孔隙较发育、具显著表生成岩作用特点的Ⅱ类有利储层,二者孔隙演化存在明显差异。Ⅰ类有利储层主要受早—中成岩期微晶石英衬垫抗压实作用控制,浅层和深层均可发育高孔隙储层;Ⅱ类有利储层主要受表生期风化淋滤作用控制,可在风化壳附近形成优质储层,整体上Ⅰ类储层物性优于Ⅱ类。

关键词: 自生矿物, 成因机理, 储层物性, 歧南断阶带, 侏罗系, 深层碎屑岩

Abstract: The characteristics and genetic mechanism of authigenic mineralshave important influence on the physical properties of deep clastic rock reservoirs. By taking the Jurassic clastic reservoirsin Qinan fault step belt of Qikou sag, offshore Bohai Sea as anexample, the types, characteristics, genetic mechanism of authigenic minerals, and their controlling effect on the development of high-quality reservoirs were studied on the basis of core observation, thin section identification, scanning electron microscope, electron probe, isotope, inclusion, and X-diffraction analyses. The results show that the Jurassic clastic reservoirs in the study area have moderate porosity and low permeability with strong heterogeneity. The main types of authigenic minerals are siliceous minerals, carbonate minerals, and clay minerals. The early microcrystalline quartz liners are distributed along the surface of the particles that effectively inhibited the overgrowth of late quartz and enhanced the resistance to compactionof the rock, which was beneficial to the preservation of primary pores; The early carbonate cementation enhanced the anti-compaction ability of the reservoirs, and provided the material foundation for the formation of dissolution pores generated by the late dissolution, which was conducive to the formation of high-porosity reservoirs; The clay minerals controlled the difference in reservoir permeability, which is positively correlated with the content of authigenic kaolinite. The reservoirs with higher permeability are distributed in the kaolinite enrichment zone in the middle part of the Jurassic. Two types of favorable reservoirs are developed in the study area:Type Ⅰ is with high content primary poresand well-developed microcrystalline quartz gaskets; Type Ⅱ is with more developed intergranular dissolution pores and more obvious epidiagenesis characteristics, and they are significantly different in pore evolution. Type Ⅰis mainly controlled by the compaction resistance of the microcrystalline quartz liners in the early to middle diagenesis stage, and the high-porosity reservoirs can be developed in both shallow and deep layers; Type Ⅱ is mainly controlled by the weathering and leaching in the supergene stage, and high-quality reservoirs can be formed near the weathering crust. Type Ⅰ reservoir has better physical properties than type Ⅱ.

Key words: authigenic minerals, genesis mechanism, reservoir physical property, Qinan fault step belt, Jurassic, deep clastic

中图分类号: 

  • P544
[1] 贾承造.关于中国当前油气勘探的几个重要问题[J].石油学报,2012,33(1):7-12. Jia Chengzao. Several Important Issues About Current Oil and Gas Exploration in China[J]. Acta Petrolei Sinica, 2012,33(1):7-12.
[2] 戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264. Dai Jinxing, Ni Yunyan, Wu Xiaoqi. Tight Gas in China and Its Significance in Exploration and Exploitation[J]. Petroleum Exploration and Development, 2012,39(3):257-264.
[3] 陈冬霞,庞雄奇,杨克明,等.川西坳陷深层叠复连续型致密砂岩气藏成因及形成过程[J].吉林大学学报(地球科学版),2016,46(6):1611-1623. Chen Dongxia, Pang Xiongqi, Yang Keming, et al. Genetic Mechanism and Formation of Superimposed Continuous Tight Sandstone Reservoir in Deep Xujiahe Formation in Western Sichuan Depression[J]. Journal of Jilin University(Earth Science Edition),2016,46(6):1611-1623.
[4] 孙靖,宋永,王仕莉,等.准噶尔盆地深层致密油储层特征及致密化成因:以莫索湾-莫北地区侏罗系八道湾组为例[J].吉林大学学报(地球科学版),2017,47(1):25-33. Sun Jing, Song Yong, Wang Shili, et al. Deep Tight Oil Reservoir Characteristics and Densification Causes in Junggar Bain:A Case from Jurassic Badaowan Formation in Mosuowan-Mobei Area[J]. Journal of Jilin University (Earth Science Edition), 2017,47(1):25-33.
[5] 蒲秀刚,周立宏,王文革,等.黄骅坳陷歧口凹陷斜坡区中深层碎屑岩储集层特征[J].石油勘探与开发,2013,40(1):36-48. Pu Xiugang, Zhou Lihong, Wang Wenge, et al. Medium-Deep Clastic Reservoirs in the Slope Area of Qikou Sag, Huanghua Depression, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2013, 40(1):36-48.
[6] 张航,廖明光,姚泾利,等.致密砂岩储层自生矿物特征及其对储集性能的影响:以鄂尔多斯盆地陇东地区长3油组为例[J].沉积与特提斯地质,2017,37(3):23-31. Zhang Hang,Liao Mingguang,Yao Jingli, et al. Authigenic Minerals and Their Influences on the Physical Properties of Tight Sandstone Reservoirs:An Example from the Chang-3 Oil Reservoirs in the Longdong Region, Ordos Basin[J]. Sedimentary Geology and Tethyan Geology,2017,37(3):23-31.
[7] 黄思静,黄培培,王庆东,等.胶结作用在深埋藏砂岩孔隙保存中的意义[J].岩性油气藏,2007,19(3):7-13. Huang Sijing, Huang Peipei, Wang Qingdong, et al. The Significance of Cementation in Porosity Preservation in Deep-Buried Sandstones[J]. Lithologic Reservoirs,2007, 19(3):7-13.
[8] 孙治雷,黄思静,张玉修,等.四川盆地须家河组砂岩储层中自生绿泥石的来源与成岩演化[J].沉积学报,2008,26(3):469-468. Sun Zhilei, Huang Sijing, Zhang Yuxiu, et al. Origin and Diagenesis of Authigenic Chlorite Within the Sandstone Reservoirs of Xujiahe Formation,Sichuan Basin, China[J]. Acta Sedimentological Sinica, 2008,26(3):469-468.
[9] 李云,胡作维.深层砂岩储层中微晶石英包膜的形成及其对原生粒间孔隙的保存意义[J].地质科技情报,2014,33(3):87-92. Li Yun, Hu Zuowei. Formation of the Microcrystalline Quarta Coatings and Its Protection of the Primary Intergranular Porosity in the Deeply-Buried Sandstone Reservoirs[J]. Geological Science and Technology Information, 2014,33(3):87-92.
[10] 杨威,魏国齐,赵杏媛,等.碎屑岩储层中自生绿泥石衬边能抑制石英次生加大吗:以四川盆地须家河组砂岩储层为例[J].石油学报,2013,34(增刊1):128-135. Yang Wei, Wei Guoqi, Zhao Xingyuan, et al. Can Authigenic Pore-Lining Chlorite Restrain Quartz Overgrowth in Clastic Reservoir:A Case Study of Sandstone Reservoir in Xujiahe Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2013,34(Sup.1):128-135.
[11] 伏万军.黏土矿物成因及对砂岩储集性能的影响[J].古地理学报,2000,2(3):59-68. Fu Wanjun. Influence of Clay Minerals on Sandstone Reservoir Properties[J]. Journal of Palaeogeography,2000,2(3):59-68.
[12] 陈鑫,钟建华,袁静,等.渤南洼陷深层碎屑岩储集层中的黏土矿物特征及油气意义[J].石油学报,2009,30(2):201-207. Chen Xin, Zhong Jianhua, Yuan Jing, et al. Characteristics of Clay Mineral and Its Hydrocarbon Significance in Paleogene Clastic Reservoir of Bonan Sag[J]. Acta Petrolei Sinica, 2009,30(2):201-207.
[13] 远光辉,操应长,贾珍臻,等.含油气盆地中深层碎屑岩储层异常高孔带研究进展[J].天然气地球科学,2015,26(1):28-42. Yuan Guanghui, Cao Yingchang, Jia Zhenzhen, et al. Research Progress on Anomalously High Porosity Zones in Deeply Buried Clastic Reservoirs in Petroliferous Basin[J]. Natural Gas Geoscience,2015,26(1):28-42.
[14] 邓运华.歧南断阶带油气聚集因素探讨[J].中国海上油气,1995,9(4):246-252. Deng Yunhua. Discussions on the Factors Controlling Hydrocarbon Accumulation in Qinan Fault Step Belt[J].China Offshore Oil and Gas,1995,9(4):246-252.
[15] 周立宏,卢异,肖敦清,等.渤海湾盆地歧口凹陷盆地结构构造及演化[J].天然气地球科学,2011,22(3):373-382. Zhou Lihong, Lu Yi, Xiao Dunqing, et al. Basinal Texture Ttructure of Qikou Sag in Bohai Bay Basin and Its Evolution[J]. Natural Gas Geoscience,2011,22(3):373-382.
[16] 周静,吕大炜,陈龙,等.渤海海域区前古近纪构造对上古生界-中生界烃源岩的影响[J].石油实验地质,2013,35(2):146-156. Zhou Jing, Lü Dawei, Chen Long, et al. Influence of Pre-Paleogene Tectonics on Upper Paleozoic-Mesozoic Source Rocks in Bohai Sea Area[J]. Petroleum Experimental Geology, 2013,35(2):146-156.
[17] Rikke W, Henrik F, Kazerouni M A, et al. Development of Early Diagenetic Silica and Quartz Morphologies:Examples from the Siri Canyon,Danish North Sea[J]. Sedimentary Geology,2010,228(3/4):151-170.
[18] Worden R H, French M W, Marinal E. Amorphous Silica Nanofilms Result in Growth of Misoriented Microcrystalline Quartz Cement Maintaining Porosity in Deeply Buried Sandstones[J]. Geology, 2012,40(2):179-182.
[19] 蒙启安,李军辉,李跃,等.海拉尔-塔木察格盆地中部富油凹陷高含凝灰质碎屑岩储层成因及油气勘探意义[J]. 吉林大学学报(地球科学版),2020,50(2):569-578. Meng Qi'an, Li Junhui, Li Yue, et al. Genetic Mechanism of High Content Tuffaceous Clastic Rock Reservoir in Hailar-Tamucage Basin[J]. Journal of Jilin University (Earth Science Edition),2020,50(2):569-578.
[20] 张善文.成岩过程中的"耗水作用"及其石油地质意义[J].油气地球物理,2006, 4(4):1-6. Zhang Shanwen. "Water Consumption" and Its Oil Geologic Meaning in Digenetic Stage[J]. Petroleum Geophysics, 2006,4(4):1-6.
[21] 张永旺,李峰,曲正阳.东营凹陷碎屑岩储层长石溶蚀、Al迁移富集特征[J].现代地质,2018,32(2):357-363. Zhang Yongwang, Li Feng, Qu Zhengyang. Characteristics of the Feldspar Corrosion and Migration Enrichment of Al in the Clastic Reservoir of Dongying Depression[J]. Geoscience, 2018,32(2):357-363.
[22] French M W, Worden R H, Mariani E, et al. Microcrystalline Quartz Generation and the Preservation of Porosity in Sandstones:Evidence from the Upper Cretaceous of the Subhercynian Basin, Germany[J]. Journal of Sedimentary Research, 2012,82(6):422-434.
[23] 闫志为,刘辉利,张志卫.温度及CO2 对方解石、白云石溶解度影响特征分析[J].中国岩溶,2009,28(1):7-10. Yan Zhiwei, Liu Huili, Zhang Zhiwei. Influences of Temperature and CO2 on the Solubility of Calcite and Dolomite[J]. Carsologica Sinica,2009,28(1):7-10.
[24] Chuhan F A, Bjorlykke K, Lowrey C. The Role Provenance in Illitization of Deeply Buried Reservoir Sandstones from Haltenbanken and North Viking Graben, Offshore Norway[J]. Marine and Petroleum Geology, 2000,17(6):673-689.
[25] 黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506. Huang Sijing, Hunag Keke, Feng Wenli, et al. Mass Exchanges Among Feldspar, Kaolinite and Illinte and Their Influences on Secondary Porosity Formation in Clastic Diagenesis:A Case Study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression[J]. Geochinica, 2009,38(5):498-506.
[26] Carothers W W, Adami L H, Rosenbauer R J. Experimental Oxygen Isotope Fractionation Between Siderite-Water and Phosphoric Acid Liberated CO2-Siderite[J]. Geochimica et Cosmochimica Acta, 1988,52(10):2445-2450.
[27] 陈秀艳,王剑,张立平,等. 塔里木盆地哈拉哈塘地区石炭系东河砂岩段碳酸盐胶结物沉积特征及其成因[J]. 吉林大学学报(地球科学版),2020,50(2):509-517. Chen Xiuyan, Wang Jian, Zhang Liping, et al. Sedimentary Characteristics and Genesis of Carbonate Cements in Carboniferous Donghe Sandstone Member,Hanilcatam Area of Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2020,50(2):509-517.
[28] 胡作维,李云,黄思静,等.颗粒包膜在深埋藏砂岩储层原生孔隙保存中的意义[J].矿物岩石地球化学通报,2012,31(6):640-648. Hu Zuowei, Li Yun, Huang Sijing, et al. The Significance of the Grain Coating in Preserving the Primary Porosity in Deeply Buried Sandstone Reservoirs[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012,31(6):640-648.
[29] 杨海军,刘永福,苏洲,等.塔北隆起深层碎屑岩优质储层形成主控因素[J].地质论评,2020,66(1):169-179. Yang Haijun, Liu Yongfu, Su Zhou, et al. The Main Controlling Factors for the Formation of High Quality Clastic Reservoirs in Deeply Buried Strata of Tabei Uplift[J]. Geological Review,2020,66(1):169-179.
[30] 崔景伟,朱如凯. 致密砂岩层内强钙质胶结物成因机制及其意义:以鄂尔多斯盆地三叠系延长组长7油层组为例[J].吉林大学学报(地球科学版),2020,50(4):957-967. Cui Jingwei, Zhu Rukai. Mecanism of Strong Calcium Cementation in Tight Sandstone and Its Significance:A Case Study on Triassic Chang 7 Oil Formation of Yanchang Formation in Ordos Basin[J]. Journal of Jilin University (Earth Science Edition),2020,50(4):957-967.
[31] 李明刚,禚喜准,陈刚,等.恩平凹陷珠海组储层的孔隙度演化模型[J].石油学报,2009,30(6):862-868. Li Minggang, Zhuo Xizhun, Chen Gang, et al. Applicationg of Porosity Evolution Model to Reservoir Assessment of Zhuhai Formation in Enping Sag[J]. Acta Petrolei Sinica, 2009,30(6):862-868.
[32] 王艳忠,操应长,葸克来,等.碎屑岩储层地质历史时期孔隙度演化恢复方法:以济阳坳陷东营凹陷沙河街组四段上亚段为例[J].石油学报,2013,34(6):1100-1111. Wang Yanzhong, Cao Yingchang, Xi Kelai, et al. A Recovery Method for Porosity Evolution of Clasitc Reservoirs with Geological Time:A Case Study from the Upper Submember of Es4 in the Dongying Depression, Jiyang Subbasin[J]. Acta Petrolei Sinica, 2013,34(6):1100-1111.
[33] Scherer M. Parameters Influencing Porosity in Sandstones:A Model for Sandstone Porosity Prediction[J]. AAPG Bulletin,1987,71(5):485-491.
[1] 黄鑫, 段冬平, 刘彬彬, 李炳颖, 丁芳, 王伟, 娄敏. 西湖凹陷花港组绿泥石成因及其对储层物性的影响[J]. 吉林大学学报(地球科学版), 2021, 51(3): 669-679.
[2] 李勇, 陈世加, 尹相东, 何清波, 苏恺明, 肖正录, 邱雯, 何鑫. 储层中固体沥青研究现状、地质意义及其发展趋势[J]. 吉林大学学报(地球科学版), 2020, 50(3): 732-746.
[3] 迟唤昭, 董福湘, 薛晓刚, 刘财, 司考. 松辽盆地南部地区营城组典型火山机构地质特征[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1649-1657.
[4] 陈思芮, 曲希玉, 王冠民, 王清斌, 曹英权. 渤中凹陷CFD18-2油田高岭石胶结作用及其对储层物性的影响[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1235-1246.
[5] 牛海青, 韩小锋, 肖波, 魏建设, 张慧元, 王宝文. 中口子盆地侏罗系煤系烃源岩地球化学特征及生烃潜力评价[J]. 吉林大学学报(地球科学版), 2019, 49(4): 970-981.
[6] 肖国林, 蔡来星, 郭兴伟, 董贺平, 庞玉茂. 北黄海盆地东部坳陷勘探突破对我国近海残留“黑色侏罗系”油气勘探的启示[J]. 吉林大学学报(地球科学版), 2019, 49(1): 115-130.
[7] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965-980.
[8] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
[9] 邱隆伟, 师政, 付大巍, 潘泽浩, 杨生超, 曲长胜. 临南洼陷沙三段孔隙度控制因素分析与定量模型[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1321-1331.
[10] 李小林, 吴国禄, 雷玉德, 李重阳, 赵继昌, 白银国, 曾昭发, 赵振, 张珊珊, 赵爱军. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版), 2016, 46(1): 220-229.
[11] 高帅, 马世忠, 庞雄奇, 巩磊, 陈昶旭, 高昂, 秦旗. 准噶尔盆地腹部侏罗系油气成藏主控因素定量分析及有利区预测[J]. 吉林大学学报(地球科学版), 2016, 46(1): 36-45.
[12] 陈彬滔, 潘树新, 梁苏娟, 张庆石, 刘彩燕, 王革. 陆相湖盆深水块体搬运体优质储层的主控因素以松辽盆地英台地区青山口组为例[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1002-1010.
[13] 郑光,许强,林峰,巨能攀,邓茂林,汪新芳. 2012年6·29贵州岑巩龙家坡滑坡灾害的基本特征与成因机理:一个由侧向剪切扰动诱发大型滑坡的典型案例[J]. 吉林大学学报(地球科学版), 2014, 44(3): 932-945.
[14] 李雄炎, 李洪奇, 阴平, 陈亦寒, 周金煜. 柴达木盆地三湖地区第四系低饱和度气层的成因机理[J]. J4, 2010, 40(6): 1241-1247.
[15] 单玄龙, 罗洪浩, 孙晓猛, 张洋洋, 衣健. 四川盆地厚坝侏罗系大型油砂矿藏的成藏主控因素[J]. J4, 2010, 40(4): 897-904.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤洁,吕川,李昭阳,王晨野,张景成,李海毅. 基于灰色聚类与3S耦合方法的生态环境质量变化趋势研究--以吉林省大安市为例[J]. J4, 2008, 38(6): 1037 -1043 .
[2] 束龙仓,李 伟. 北塘水库库底地层渗透系数的随机特性分析[J]. J4, 2007, 37(2): 216 -0220 .
[3] 王金生,滕彦国,吴东杰. 不流动水与非平衡吸附作用对溶质运移影响的数值模型-MIENESOR[J]. J4, 2007, 37(2): 266 -270 .
[4] 苏小四,林学钰,董维红,万玉玉. 反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J]. J4, 2007, 37(2): 271 -277 .
[5] 柳行军,刘志宏,冯永玖,任延广,李春柏. 海拉尔盆地乌尔逊凹陷构造特征及变形序列[J]. J4, 2006, 36(02): 215 -0220 .
[6] 杨俊鹏,胡 克,刘玉英. 吉林西部盐碱化土壤碳酸盐的碳稳定同位素特征[J]. J4, 2006, 36(02): 245 -0249 .
[7] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[8] 刘金辉,孙占学,史维浚. 运用铀同位素研究砂岩型铀矿的几个问题[J]. J4, 2006, 36(04): 516 -520 .
[9] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[10] 杨春梅, 李洪奇,陆大卫,张方礼,高 原,邵英超. 不同驱替方式下岩石电阻率与饱和度的关系[J]. J4, 2005, 35(05): 667 -671 .