吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 669-679.doi: 10.13278/j.cnki.jjuese.20200149

• 地质与资源 • 上一篇    下一篇

西湖凹陷花港组绿泥石成因及其对储层物性的影响

黄鑫, 段冬平, 刘彬彬, 李炳颖, 丁芳, 王伟, 娄敏   

  1. 中海石油(中国)有限公司上海分公司, 上海 200335
  • 收稿日期:2020-06-23 出版日期:2021-05-26 发布日期:2021-06-07
  • 作者简介:黄鑫(1988—),男,工程师,主要从事地震沉积学、储层地质学方面的研究,E-mail:huangxin19@cnooc.com.cn
  • 基金资助:
    国家科技重大专项(2016ZX05027-004);国家自然科学基金项目(41672129,41602135)

Origin Mechanism of Chlorite and Its Impact on Reservoir Properties in Huagang Formation, Xihu Depression

Huang Xin, Duan Dongping, Liu Binbin, Li Bingying, Ding Fang, Wang Wei, Lou Min   

  1. Shanghai Branch of CNOOC Ltd, Shanghai 200335, China
  • Received:2020-06-23 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the National Science and Technology Major Projects of China (2016ZX05027-004) and the National Natural Science Foundation of China (41672129,41602135)

摘要: 在西湖凹陷花港组储层整体低渗的背景下,优质储层的发育往往伴随绿泥石的富集。通过薄片观察、X衍射分析和扫描电镜及能谱分析等研究,认为研究区绿泥石呈黏土包膜、孔隙衬里和孔隙充填3种产出状态。黏土包膜为同沉积期铁镁物质絮凝吸附形成,成分复杂。孔隙衬里是绿泥石最主要的产出状态:Ⅰ类孔隙衬里绿泥石在早压实期前后由黏土包膜重结晶形成,单晶呈半自形片状,铁镁质量分数较低,排列杂乱;Ⅱ类孔隙衬里绿泥石在早压实期后由孔隙流体在洁净的颗粒表面结晶而成,单晶呈相对自形六方片状,铁镁质量分数较高,多垂直颗粒表面有序排列。孔隙充填绿泥石可细分为分散片状、书页状和绒球状,与溶蚀作用密切相关,单晶自形程度和铁镁质量分数均最高。黏土包膜绿泥石对储层物性的影响较小,但有助于衬里绿泥石的形成;孔隙衬里绿泥石难以缓解压实作用,但能够在一定程度上抑制压溶作用和有效地抑制早期石英加大,其中Ⅰ类孔隙衬里绿泥石由于连续性较好、排列杂乱、结晶较差和晶间孔复杂,对硅质胶结抑制作用明显,而Ⅱ类孔隙衬里绿泥石则相反,对硅质胶结的抑制作用有限;孔隙充填绿泥石仅充填较大原生粒间孔和粒间溶孔,对渗透率影响较小,仅在一定程度上减小了孔隙度。现今储层物性更多受控于储层砂岩的原始沉积组构以及相应的压实和溶蚀强度的改造过程,绿泥石的富集对优质储层具指示作用。

关键词: 西湖凹陷, 花港组, 绿泥石, 成因机理, 孔隙结构

Abstract: In the context of low-permeability reservoirs in the Huagang Formation in the Xihu depression, high quality reservoirs are often associated with the enrichment of chlorite. There are three different types of chlorites: Clay coating chlorite, pore-lining chlorite, and pore-filling chlorite. The clay coating chlorites with complex composition were formed in the syn-sedimentary stage through flocculation and adsorption of Fe and Mg. The pore-lining chlorites are the most common type:Among them,type I pore-lining chlorites were formed by recrystallization of clay coating chlorites during early compaction period, and the monocrystals are subhedral platelets with low Fe and Mg content and disorderly arrangement; Type Ⅱ pore-lining chlorites were formed by crystallization of pore fluid on clean grain surface, and the monocrystals are euhedral hexagonal platelets with higher Fe and Mg content and mainly arranged orderly on the surface of vertical particles. The pore-filling chlorites are in dispersive flake, booklet, and pompon aggregation, which are closely related to dissolution with the highest euhedral crystals and highest Fe and Mg content. The clay coating chlorites have little effect on reservoir physical properties, but can help the formation of pore-lining chlorites; The pore-lining chlorites are difficult to alleviate compaction, but can inhibit pressure solution and early quartz overgrowth to a certain extent. Type I-pore-lining chlorites are characterized by good continuity, disorderly arrangement, poor crystallization, and complex intergranular pores, and have obvious inhibition on quartz cementation, but type Ⅱ-pore-lining chlorites have limited inhibition on quartz cementation; The pore-filling chlorites only fill larger primary intergranular pores and intergranular dissolved pores, which have little effect on permeability and only reduce porosity to a certain extent. The physical properties of reservoirs are mainly controlled by the original sedimentary structure of reservoir sandstone and the transformation process of corresponding compaction and dissolution strength; And the chlorite enrichment plays an indicative role in high-quality reservoirs.

Key words: Xihu depression, Huagang Formation, chlorite, origin mechanism, pore structure

中图分类号: 

  • TE122.2
[1] Heald M T. Cementation of Simpson and St Peter Sandstones in Parts of Oklahoma, Arkansas, and Missouri[J]. The Journal of Geology, 1956, 64(1): 16-30.
[2] Jahren J S. Evidence of Ostwald Ripening Related Recrystallization of Diagenetic Chlorites from Reservoir Rocks Offshore Norway[J]. Clay Minerals, 1991, 26(2): 169-178.
[3] Ehrenberg S N. Preservation of Anomalously High Porosity in Deeply Buried Sandstones by Grain-Coating Chlorite; Examples from the Norwegian Continental Shelf[J]. AAPG Bulletin, 1993, 77(7): 1260-1286.
[4] Grigsby J D. Origin and Growth Mechanism of Authigenic Chlorite in Sandstones of the Lower Vicksburg Fomation, South Texas[J]. Journal of Sedimentary Research,2001, 71(1): 27-36.
[5] Billault V, Beaufort D, Baronnet A, et al. A Nanopetrographic and Textural Study of Grain-Coating Chlorites in Sandstone Reservoirs[J]. Clay Minerals, 2003, 38(3): 315-328.
[6] Berger A, Gier S, Krois P. Porosity-Preserving Chlorite Cements in Shallow-Marine Volcaniclastic Sandstones: Evidence from Cretaceous Sandstones of the Sawan Gas Field, Pakistan[J]. AAPG Bulletin, 2009, 93(5): 595-615.
[7] Bahlis A B, De Ros L F. Origin and Impact of Authigenic Chlorite in the Upper Cretaceous Sandstone Reservoirs of the Santos Basin, Eastern Brazil[J]. Petroleum Geoscience, 2013, 19(2): 185-199.
[8] Huggett J, Burley S, Longstaffe F, et al. The Nature and Origin of Authigenic Chlorite and Related Cements in Oligo-Miocene Reservoir Sandstones, Tapti Gas Fields, Surat Depression, Offshore Western India[J]. Journal of Petroleum Geology, 2015, 38(4): 383-409.
[9] 兰叶芳,黄思静,梁瑞,等. 自生绿泥石对砂岩储层孔隙度-渗透率关系的影响:以鄂尔多斯盆地姬塬—华庆地区三叠系长8油层组为例[J]. 成都理工大学学报(自然科学版), 2011, 38(3): 313-320. Lan Yefang, Huang Sijing, Liang Rui, et al. Influence of Authigenic Chlorite on the Relationship of Porosity to Permeability in the Sandstone Reservoir: A Case Study from Chang-8 Oil-Bearing Formation of Triassic in Jiyuan-Huaqing Area, Ordos Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2011, 38(3): 313-320.
[10] 姚泾利,王琪,张瑞,等. 鄂尔多斯盆地华庆地区延长组长6砂岩绿泥石膜的形成机理及其环境指示意义[J]. 沉积学报, 2011, 29(1): 72-79. Yao Jinli, Wang Qi, Zhang Rui, et al. Forming Mechanism and Their Environmental Implications of Chlorite-Coatings in Chang 6 Sandstone (Upper Triassic) of Hua-Qing Area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(1): 72-79.
[11] 楚美娟,郭正权,齐亚林,等. 鄂尔多斯盆地延长组长8储层定量化成岩作用及成岩相分析[J]. 天然气地球科学, 2013, 24(3): 477-484. Chu Meijuan, Guo Zhengquan, Qi Yalin, et al. Quantitative Diagenesis and Diagenetic Facies Analysis on Chang 8 Reservoir of Yanchang Formation in Ordos Basin[J]. Natural Gas Geoscience, 2013, 24(3): 477-484.
[12] 曲希玉,刘珍,高媛,等. 绿泥石包壳对碎屑岩储层物性的影响及其形成环境:以鄂尔多斯盆地大牛地气田上古生界为例[J]. 沉积学报, 2015, 33(4): 786-794. Qu Xiyu, Liu Zhen, Gao Yuan, et al. The Influence and Formation Environment of Chlorite Coatings in the Clastic Rock: A Case Study from the Upper Paleozoic in Daniudi Gas Field, Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 786-794.
[13] 惠学智,许有为,吕娜娜,等.鄂尔多斯盆地华庆地区长8段成岩主控因素及其对储层的影响[J]. 世界地质, 2019, 38(4): 1012-1020. Hui Xuezhi, Xu Youwei, Lü Nana, et al. Major Controlling Factors of Diagenesis and Their Influences on Chang-8 Section Reservoir, Huaqing Area, Ordos Basin[J]. Global Geology, 2019, 38(4): 1012-1020.
[14] 孙治雷,黄思静,张玉修,等. 四川盆地须家河组砂岩储层中自生绿泥石的来源与成岩演化[J]. 沉积学报, 2008, 26(3): 459-468. Sun Zhilei, Huang Sijing, Zhang Yuxiu, et al. Origin and Diagenesis of Authigenic Chlorite Within the Sandstone Reservoirs of Xujiahe Formation, Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2008, 26(3): 459-468.
[15] 刘金库,彭军,刘建军,等. 绿泥石环边胶结物对致密砂岩孔隙的保存机制:以川中—川南过渡带包界地区须家河组储层为例[J]. 石油与天然气地质, 2009, 30(1): 53-58. Liu Jinku, Peng Jun, Liu Jianjun, et al. Pore-Preserving Mechanism of Chlorite Rims in Tight Sandstone: An Example from the T3x Formation of Baojie Area in the Transitional Zone from the Central to Southern Sichuan Basin[J]. Oil & Gas Geology, 2009, 30(1): 53-58.
[16] 谢武仁,杨威,赵杏媛,等. 川中地区须家河组绿泥石对储集层物性的影响[J]. 石油勘探与开发, 2010, 37(6): 674-679. Xie Wuren, Yang Wei, Zhao Xingyuan, et al. Influences of Chlorite on Reservoir Physical Properties of the Xujiahe Formation in the Central Part of Sichuan Basin[J]. Petroleum Exploration and Development, 2010, 37(6): 674-679.
[17] 杨威,魏国齐,赵杏媛,等. 碎屑岩储层中自生绿泥石衬边能抑制石英次生加大吗?: 以四川盆地须家河组砂岩储层为例[J]. 石油学报, 2013, 34(增刊1): 128-135. Yang Wei, Wei Guoqi, Zhao Xingyuan, et al. Can Authigenic Pore-Lining Chlorite Restrain Quartz Overgrowth in Clastic Reservoir?: A Case Study of Sandstone Reservoir in Xujiahe Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(Sup.1): 128-135.
[18] 李红进,张道勇,葛云锦,等.甘泉—富县地区长7致密砂岩储层成岩相的定量识别及其对含油性的控制作用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1529-1539. Li Hongjin, Zhang Daoyong, Ge Yunjin, et al. Quantitative Identification of Diagenetic Facies of Tight Sandstone Reservoirs and Its Control on Oil-Bearing Property: A Case Study of Chang 7, Ganquan-Fuxian[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6): 1529-1539.
[19] Matlack K S, Houseknecht D W, Applin K R. Emplacement of Clay into Sand by Infiltration[J]. Journal of Sedimentary Petrology, 1989, 59(1): 77-87.
[20] Wilson M D, Inherited Grain-Rimming Clays in Sandstones from Eolian and Shelf Environments: Their Origin and Control on Reservoir Properties[J]. SEPM Special Publication, 1992, 47: 209-225.
[21] Mcilroy D, Worden R H, Needham S J. Faeces, Clay Minerals and Reservoir Potential[J]. Journal of the Geological Society, 2003, 160(3): 489-493.
[22] Needham S J, Worden R H, Mcilroy D. Experimental Production of Clay Rims by Macrobiotic Sediment Ingestion and Excretion Processes[J]. Journal of Sedimentary Research, 2005, 75(6): 1028-1037.
[23] Haile B G, Hellevang H, Aagaard P, et al. Experimental Nucleation and Growth of Smectite and Chlorite Coatings on Clean Feldspar and Quartz Grain Surfaces[J]. Marine and Petroleum Geology, 2015, 68: 664-674.
[24] 黄思静,黄可可,冯文立,等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球化学, 2009, 38(5): 498-506. Huang Sijing, Huang Keke, Feng Wenli, et al. Mass Exchanges Among Feldspar, Kaolinite and Illite and Their Influences on Secondary Porosity Formation in Clastic Diagenesis: A Case Study on the Upper Paleozoic Ordos Basin and Xujiahe Formation, Western Sichuan Depression[J]. Geochimica, 2009, 38(5): 498-506.
[25] Beaufort D, Rigault C, Billon S, et al. Chlorite and Chloritization Processes Through Mixed-Layer Mineral Series in Lowtemperature Geological Systems: A Review[J]. Clay Minerals, 2015, 50(4):497-523.
[26] 田建锋,陈振林,杨友运. 自生绿泥石对砂岩储层孔隙的保护机理[J]. 地质科技情报, 2008, 27(4): 49-54. Tian Jianfeng, Chen Zhenlin, Yang Youyun. Protection Mechanism of Authigenic Chlorite on Sandstone Reservoir Pores[J]. Geological Science and Technology Information, 2008, 27(4): 49-54.
[27] Joanna M A, Richard E L. How Clay Grain Coats Inhibit Quartz Cement and Preserve Porosity in Deeply Buried Sandstones: Observations and Experiments[J]. AAPG Bulletin, 2012, 96(11): 2091-2119.
[28] 陈思芮,曲希玉,王冠民,等. 渤中凹陷CFD18-2油田高岭石胶结作用及其对储层物性的影响[J].吉林大学学报(地球科学版),2019,49(5):1235-1246. Chen Sirui, Qu Xiyu, Wang Guanmin, et al. Kaolinite Cementation and Its Influences on Reservoir Properties in CFD18-2 Oilfield in Bozhong Sag[J]. Journal of Jilin University (Earth Science Edition),2019,49 (5):1235-1246.
[29] Ma P J, Lin C Y, Zhang S Q, et al. Formation of Chlorite Rims and the Impact of Pore-Lining Chlorite on Reservoir Quality: A Case Study from Shiqianfeng Sandstones in Upper Permian of Dongpu Depression, Bohai Bay Basin, Eastern China[J]. Australian Journal of Earth Sciences, 2017, 64(6):825-839.
[30] 单祥, 郭华军, 郭旭光,等. 准噶尔盆地中拐地区上乌尔禾组储集层绿泥石膜成因及其对储集层物性的影响[J]. 中国石油大学学报(自然科学版), 2019, 43(6): 32-40. Shan Xiang, Guo Huajun, Guo Xuguang, et al. Genesis of Chlorite Coatings and Their Effects on Reservoir Quality in Upper Urho Formation of Zhongguai Area, Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(6): 32-40.
[31] 孙小龙,林承焰,董春梅,等.储层岩性控制下的绿泥石对硅质胶结的影响[J].地球科学,2017,42(9):1599-1607. Sun Xiaolong, Lin Chengyan, Dong Chunmei, et al. Influence of Chlorite on Siliceous Cement Under Control of Reservoir Lithology[J]. Earth Science, 2017, 42(9): 1599-1607.
[32] 林建力, 张宪国, 林承焰,等. 岩相约束下的深层致密砂岩气藏储层演化特征[J]. 石油与天然气地质, 2019,40(4): 886-899. Lin Jianli, Zhang Xianguo, Lin Chengyan, et al. Diagenetic Evolution Characteristics Constrained by Lithofacies in Deep Tight Sand Gas Reservoir[J]. Oil & Gas Geology, 2019, 40(4): 886-899.
[33] 郑军. 西湖凹陷中央背斜带中北部深部优质储层孔隙保存机理[J].地质科技情报, 2016, 35(3): 173-179. Zheng Jun. Porosity Preservation of Deeply Buried and High-Quality Reservoirs in the North and Middle Part of Central Anticlinal Zone, Xihu Sag[J]. Geological Science and Technology Information, 2016, 35(3): 173-179.
[1] 郭颖, 杨波, 韩自军, 李果营, 吴庆勋, 叶涛. 深层碎屑岩自生矿物成因机理及其对储层物性的影响——以渤海歧南断阶带侏罗系为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 973-990.
[2] 张益明, 秦小英, 郭智奇, 牛聪, 王迪, 凌云. 针对致密砂岩气储层复杂孔隙结构的岩石物理模型及其应用[J]. 吉林大学学报(地球科学版), 2021, 51(3): 927-939.
[3] 吴蒙, 秦勇, 王晓青, 李国璋, 朱超, 朱士飞. 中国致密砂岩储层流体可动性及其影响因素[J]. 吉林大学学报(地球科学版), 2021, 51(1): 35-51.
[4] 魏博, 赵建斌, 魏彦巍, 李振林, 熊葵. 福山凹陷白莲流二段储层分类方法[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1639-1647.
[5] 谭思哲, 侯凯文, 覃军, 汤睿, 杨敏. 西湖凹陷平湖组不同煤系烃源岩热解生烃差异及其在油气勘探中的应用[J]. 吉林大学学报(地球科学版), 2020, 50(4): 968-978.
[6] 杨坤, 王付勇, 曾繁超, 赵久玉, 王聪乐. 基于数字岩心分形特征的渗透率预测方法[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1003-1011.
[7] 何玉平. 东海盆地西湖凹陷天台区始新世平湖组风暴岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 500-508.
[8] 魏恒飞, 陈践发, 陈晓东. 东海盆地西湖凹陷凝析气藏成藏特征及分布控制因素[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1507-1517.
[9] 王璐, 杨胜来, 彭先, 刘义成, 徐伟, 邓惠. 缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯-磨溪地区灯四段为例[J]. 吉林大学学报(地球科学版), 2019, 49(4): 947-958.
[10] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[11] 巩兴会, 陈琳琳, 李昆, 肖剑南. 东海陆架盆地西湖凹陷东部边缘结构解释及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(1): 154-164.
[12] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[13] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[14] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[15] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 潘建立. 顶管施工引起土体变形的计算方法及应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1458 -1465 .
[2] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063 -1072 .
[3] 李勇, 陈世加, 尹相东, 何清波, 苏恺明, 肖正录, 邱雯, 何鑫. 储层中固体沥青研究现状、地质意义及其发展趋势[J]. 吉林大学学报(地球科学版), 2020, 50(3): 732 -746 .
[4] 杨元江, 邓昌州, 李成禄, 张立, 高永志, 于喜洹. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1064 -1081 .
[5] 陈力,梁海安,张文娟,荣帆. 模糊数学方法在城市工程地质环境区划中的应用--以抚顺市城区为例[J]. J4, 2008, 38(5): 837 -0840 .
[6] 路兴昌,张艳红. 基于三维激光扫描的空间地物建模[J]. J4, 2008, 38(1): 167 -0171 .
[7] 刘志宏, 周飞, 吴相梅, 孙晓猛, 赵呈祥, 梅梅, 黄超义. 东北地区佳木斯隆起与周缘中新生代盆地群的耦合关系[J]. J4, 2011, 41(5): 1335 -1344 .
[8] 丁清峰, 金圣凯, 王冠, 张本龙. 青海省都兰县果洛龙洼金矿成矿流体[J]. 吉林大学学报(地球科学版), 2013, 43(2): 415 -426 .
[9] 沈金松,詹林森,马超. 裂缝等效介质模型对裂缝结构和充填介质参数的适应性[J]. 吉林大学学报(地球科学版), 2013, 43(3): 993 -1003 .
[10] 卞建民, 刘彩虹, 杨晓舟. 吉林西部大安灌区土壤贮水能力空间变异特征及土壤水分有效性[J]. 吉林大学学报(地球科学版), 2017, 47(2): 554 -563 .