吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 927-939.doi: 10.13278/j.cnki.jjuese.20200277

• 地球探测与信息技术 • 上一篇    下一篇

针对致密砂岩气储层复杂孔隙结构的岩石物理模型及其应用

张益明1, 秦小英2, 郭智奇2, 牛聪1, 王迪1, 凌云1   

  1. 1. 中海油研究总院有限责任公司, 北京 100028;
    2. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2020-11-26 出版日期:2021-05-26 发布日期:2021-06-07
  • 作者简介:张益明(1964—),男,高级工程师,博士,主要从事地震反演和储层预测方面的研究,E-mail:zhangym1@cnooc.com.cn
  • 基金资助:
    中海石油有限公司综合科研项目(YXKY-2019-ZY-04);国家自然科学基金项目(42074153)

Petrophysical Model for Complex Pore Structure and Its Applications in Tight Sand Gas Reservoirs

Zhang Yiming1, Qin Xiaoying2, Guo Zhiqi2, Niu Cong1, Wang Di1, Ling Yun1   

  1. 1. CNOOC Research Institude Co, Ltd., Beijing 100028, China;
    2. College of GeoExploration Science and Techonology, Jilin University, Changchun 130026, China
  • Received:2020-11-26 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the China National Offshore Oil Corporation Research Project (YXKY-2019-ZY-04) and the National Natural Science Foundation of China (42074153)

摘要: 针对致密砂岩气储层复杂的微观孔隙结构进行岩石物理建模,在模型中比较了单一孔隙纵横比、双孔隙模型两种表征孔隙结构的表征方式。岩石物理正演分析表明,两种孔隙结构模型均可解释致密砂岩复杂的速度-孔隙度关系。岩石物理反演结果表明,双孔隙模型对测井横波速度的预测精度更高,说明该模型更适用于表征研究区致密砂岩的孔隙结构,反演的软孔比例参数能够反映地层中孔隙结构的非均匀分布。应用双孔隙模型计算致密砂岩地层岩石骨架的弹性模量,与Krief及Pride等传统经验公式相比,该方法考虑了岩石骨架模量与矿物基质、孔隙度和孔隙结构等微观物性因素的关系,理论上更具有严谨性。对致密砂岩骨架模量计算结果的分析表明,少量微裂隙的存在即能够显著影响致密砂岩骨架的弹性性质,同时孔隙空间中的球形孔隙是致密气的主要赋存空间。并且,通过致密砂岩骨架弹性模量,进一步计算了可用于地层评价的Biot系数等岩石物理参数。致密砂岩骨架模量的预测结果可为Gassmann流体替换理论、BISQ孔隙弹性介质理论等岩石物理方法提供关键参数。

关键词: 致密砂岩气, 岩石物理, 孔隙结构, 纵横比, 软孔比例, 岩石骨架

Abstract: We conducted rock physical modeling to investigate the effect of complex pore space on elastic properties of tight gas sands. Two ways for the characterization of pore spaces were compared in the rock physical model. The modeling results show that the complex velocity-porosity relationships from well log data can be interpreted by both the two models. The rock physical inversion using well log data shows that compared to the single pore aspect ratio model, the dual-porosity model gives better prediction in shear wave velocity. It reveals that the dual-porosity model may be a more realistic representation of tight sands, and the obtained parameter of the proportion of soft pores can reflect heterogeneity of pore spaces. The proposed rock physical model is used to evaluate elastic modulus of the tight sand dry frame using logging data. Compared with the conventional empirical formulas such as Krief or Pride, this method considers mineralogy, porosity and complex microstructural pore structures,so it is more rigorous to determine the elastic properties of dry frame. The analysis on the obtained results indicates that a small amount of micro-cracks may play an important role in determining elastic behaviors of dry frame of tight sands, and round pores provide the main storage space for gas. The obtained dry frame modulus can be used to calculate many rock physical parameters for formation evaluation such as the Biot coefficient, and provide key parameters for the Gassmann fluids substitution theory and BISQ theory.

Key words: tight gas sandstone, rock physics, pore structure, aspect ratio, fraction of soft pore, dry frame

中图分类号: 

  • P631
[1] 惠学智,许有为,吕娜娜,等.鄂尔多斯盆地华庆地区长8段成岩主控因素及其对储层的影响[J].世界地质,2019,38(4):1012-1020.doi:10.3969/j.issn.1004-5589.2019.04.012. Hui Xuezhi,Xu Youwei,Lyu Nana,et al.Major Controlling Factors of Diagenesis and Their Influences on Chang-8 Section Reservoir,Huaqing Area,Ordos Basin[J].Global Geology,2019,38(4):1012-1020.doi:10.3969/j.issn.1004-5589.2019.04.012.
[2] 刘喜杰,马遵敬,韩冬,等.鄂尔多斯盆地东缘临兴区块致密砂岩优质储层形成的主控因素[J]. 天然气地球科学, 2018, 29(4):481-490.doi:10.11764/j.issn.1672-1926.2018.02.002. Liu Xijie, Ma Zunjing, Han Dong, et al. Research on the Main Factors of High Quality Tight Sand Stone Reservoir in Linxing Block, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29 (4): 481-490.doi:10.11764/j.issn.1672-1926.2018.02.002.
[3] Tutuncu A N, Podio A L, Sharma M M. An Experimental Investigation of Factors Influencing Compressional-and Shear-Wave Velocities and Attenuations in Tight Gas Sandstones[J]. Geophysics, 1994, 59(1):77-86.doi:10.1190/1.1443536.
[4] Smith T M, Sayers C M, Sondergeld C H. Rock Properties in Low-Porosity/Low-Permeability Sandstones[J]. Leading Edge, 2009, 28(1):48-59.doi:10.1190/1.3064146.
[5] Ruiz F, Cheng A. A Rock Physics Model for Tight Gas Sand[J]. Leading Edge, 2010, 29(12):1484-1489.doi:10.1190/1.3525364.
[6] Yin H, Zhao J, Tang G, et al. Pressure and Fluid Effect on Frequency-Dependent Elastic Moduli in Fully Saturated Tight Sandstone[J]. Journal of Geophysical Research: Solid Earth,2017,122(11):8925-8942.doi:10.1002/2017JB014244.
[7] 周枫,徐鸣洁,马中高.等效孔隙结构模型在鄂尔多斯致密含气砂岩中的应用[J].高校地质学报,2013,19(4):588-593.doi:10.3969/j.issn.1006-7493.2013.04.004. Zhou Feng, Xu Mingjie, Ma Zhonggao,et al. Application of Effective Porosity Model to Tight Gas Sands in Ordos Basin[J]. Geological of China Universities, 2013,19 (4): 588-593.doi:10.3969/j.issn.1006-7493.2013.04.004.
[8] 印兴耀,刘欣欣,曹丹平.基于Biot相洽理论的致密砂岩弹性参数计算方法[J].石油物探,2013,52(5):445-451.doi:10.3969/j.issn.1000-1441.2013.05.001. Yin Xingyao,Liu Xinxin,Cao Danping.Elastic Parameters Calculation for Tight Sand Reservoir Based on Biot-Consistent Theory[J].Geological Prospecting for Petroleum,2013,52(5):445-451.doi:10.3969/j.issn.1000-1441.2013.05.001.
[9] 杨志芳,曹宏,姚逢昌,等.复杂孔隙结构储层地震岩石物理分析及应用[J].中国石油勘探,2014,19(3):50-56.doi:10.3969/j.issn.1672-7703.2014.03.006. Yang Zhifang, Cao Hong, Yao Fengchang,et al. Seismic Rock Physical Analysis of Complex Porous Reservoir and Its Application[J]. China Petroleum Exploration, 2014,19(3): 50-56.doi:10.3969/j.issn.1672-7703.2014.03.006.
[10] 赖锦, 王贵文, 罗官幸, 等. 基于岩石物理相约束的致密砂岩气储层渗透率解释建模[J]. 地球物理学进展, 2014, 29(3):1173-1182.doi:10.6038/pg20140323. Lai Jin,Wang Guiwen,Luo Guanxing, et al. A Fine Logging Interpretation Model of Permeability Confined by Petrophysical Facies of Tight Gas Sandstone Reservoirs[J].Progress in Geophysics,2014,29(3):1173-1182.doi:10.6038/pg20140323.
[11] 邓继新, 周浩, 王欢,等. 基于储层砂岩微观孔隙结构特征的弹性波频散响应分析[J]. 地球物理学报, 2015,58(9):3389-3400. Deng Jixin, Zhou Hao, Wang Huan, et al. The Influence of Pore Structure in Reservoir Sandstone on Dispersion Properties of Elastic Waves[J].Chinese Journal of Geophysics,2015,58(9): 3389-3400.
[12] 王璞, 吴国忱. 基于自相容近似的致密储层岩石物理建模[J]. 地球物理学进展, 2015, 30(5):2233-2238. Wang Pu,Wu Guochen. The Rock Physics Modeling for Tight Reservoir Based on the Self-Consistent Approximation[J]. Progress in Geophysics,2015,30(5):2233-2238.
[13] 姜仁, 曾庆才, 黄家强, 等. 基于岩石物理分析的致密砂岩流体检测方法研究[J]. 科学技术与工程, 2015, 15(1):163-167.doi:10.3969/j.issn.1671-1815.2015.01.030. Jiang Ren, Zeng Qingcai, Huang Jiaqiang, et al. Tight Gas Saturation Detection by Most Sensitive AVO Attributes with Rock Physics Analysis[J]. Science Technology and Engineering, 2015, 15 (1): 163-167.doi:10.3969/j.issn.1671-1815.2015.01.030.
[14] 刘倩,印兴耀,李超.含不连通孔隙的致密砂岩储层岩石弹性模量预测方法[J].石油物探,2015,54(6):635-642.doi:10.3969/j.issn.1000-1441.2015.06.001. Liu Qian, Yin Xingyao, Li Chao. Rock Elastic Modulus Estimation for Tight Sandstone Reservoirs with Disconnected Pores[J]. Geophysical Prospecting for Petroleum, 2015,54 (6):635-642.doi:10.3969/j.issn.1000-1441.2015.06.001.
[15] 印兴耀,刘倩.致密储层各向异性地震岩石物理建模及应用[J].中国石油大学学报(自然科学版),2016,40(2):52-58. Yin Xingyao, Liu Qian. Anisotropic Rock Physical Modeling of Tight Sandstone and Applications[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016,40 (2): 52-58.
[16] 王大兴. 致密砂岩气储层的岩石物理模型研究[J]. 地球物理学报, 2016,59(12):4603-4622. Wang Daxing. Study on Rock Physics Model of Gas Reservoirs in Tight Sandstone[J]. Chinese Journal of Geophysics,2016,59 (12): 4603-4622.
[17] 贾凌云, 李琳, 王千遥,等.致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018,33(4):416-424.doi:10.11867/j.issn.1001-8166.2018.04.0416. Jia Lingyun, Li Lin, Wang Qianyao, et al. Optimization of the Rock Physical Model in Tight Sandstone Reservoir[J]. Advances in Earth Science, 2018,33(4):416-424.doi:10.11867/j.issn.1001-8166.2018.04.0416.
[18] 郭梦秋, 巴晶, 马汝鹏, 等. 含流体致密砂岩的纵波频散及衰减:基于双重双重孔隙结构模型描述的特征分析[J]. 地球物理学报, 2018, 61(3):1053-1068.doi:10.6038/cjg2018L0678. Guo Mengqiu,Ba Jing,Ma Rupeng, et al.P-Wave Velocity Dispersion and Attenuation in Fluid-Saturated Tight Sandstones: Characteristics Analysis Based on a Double Double-Porosity Structure Model Description[J]. Chinese Journal of Geophysics, 2018, 61(3):1053-1068.doi:10.6038/cjg2018L0678.
[19] 何润发,巴晶,陈天胜, 等.致密砂岩气藏裂隙-孔隙型弹性岩石物理模板研究:以川西坳陷A区为例[J].地球物理学进展,2020,35(1):116-123. He Runfa, Ba Jing, Chen Tiansheng, et al. A Study on Fracture-Pore Elastic Rock Physics Template of Tight Sandstone Gas Reservoirs: A Case Study of Area A in West Sichuan Depression[J]. Progress in Geophysics, 2020,35 (1): 116-123.
[20] 逄硕,刘财,郭智奇,等.基于岩石物理模型的页岩孔隙结构反演及横波速度预测[J].吉林大学学报(地球科学版),2017,47 (2):606-615.doi:10.13278/j.cnki.jjuese.201702304. Pang Shuo,Liu Cai,Guo Zhiqi,et al. Estimation of Pore-Shape and Shear Wave Velocity Based on Rock-Physics Modelling in Shale[J].Journal of Jilin University (Earth Science Edition),2017,47(2):606-615.doi:10.13278/j.cnki.jjuese. 201702304.
[21] 张冰,郭智奇,徐聪,等.基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J].吉林大学学报(地球科学版),2018, 48(4):1244-1252.doi:10.13278/j.cnki.jjuese.20170285. Zhang Bing,Guo Zhiqi,Xu Cong,et al.Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model[J]. Journal of Jilin University (Earth Science Edition),2018,48(4):1244-1252.doi:10.13278/j.cnki.jjuese. 20170285.
[22] 李博南,曲寿利,沈珲.基于岩石物理模型的碳酸盐岩储层微观孔隙特征分析方法[J].吉林大学学报(地球科学版),2020,50 (1):285-293.doi:10.13278/j.cnki.jjuese.20190001. Li Bonan,Qu Shouli,Shen Hui.Microscopic Characterization Method of Carbonate Reservoirs Based on Rock Physics Model[J].Journal of Jilin University (Earth Science Edition), 2020, 50(1):285-293. doi:10.13278/j.cnki.jjuese.20190001.
[23] Berryman J G. Mixture Theories for Rock Properties[M].Washington, DC: American Geophysical Union,1995:205-228.doi:10.1029/RF003p0205.
[24] Wood A B, Lindsay R B. A Textbook of Sound[J]. Physics Today, 1956, 9(11):37.doi:10.1063/1.3059819.
[25] Gassmann F.Uber die Elastizitat Poroser Medien[J]. Vier Der Natur Gesellschaft in Zurich, 1951, 96:1-23.
[26] Biot,Maurice A. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range. II. Higher Frequency Range[J]. The Journal of the Acoustical Society of America, 1955, 28(182):168-191.
[27] Dvorkin J,Nur A. Dynamic Poroelasticity: A Unified Model with the Squirt and the Biot Mechanisms[J]. Geophysics, 1993, 58(4):524-533.doi:10.1190/1.1443435.
[28] Dvorkin J,Nolen-Hoeksema R, Nur A. The Squirt-Flow Mechanism: Macroscopic Description[J]. Geophysics, 1994, 59(3):428-438.doi:10.1190/1.1443605.
[29] Yan X F,Yao F C,Cao H, et al.Analyzing the Mid-Low Porosity Sandstone Dry Frame in Central Sichuan Based on Effective Medium Theory[J].Applied Geophysics,2011,18(3):163-170.doi:10.1007/s11770-011-0293-1.
[30] Krief M, Garat J, Stellingwerff J, et al. A Petrophysical Interpretation Using the Velocities of P and S Waves (Full-Waveform Sonic)[J]. Log Analyst, 1990, 31:355-369.
[31] Pride S R,Berryman J G,Harris J M.Seismic Attenuation Due to Wave-Induced Flow[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B1).doi:10.1029/2003JB002639.
[32] Lee M W. A Simple Method of Predicting S-Wave Velocity[J]. Geophysics, 2006, 71(6):F161-F164.doi:10.1190/1.2357833.
[33] Biot M A.General Theory of Three-Dimensional Consolidation[J]. Journal of Applied Physics,1941,12(2):155-164.doi:10.1063/1.1712886.
[34] Han D H,Batzle M. Gain Function and Hydrocarbon Indicators[J]. SEG Technical Program Expanded Abstracts,2003, 22(1):1695.doi:10.1190/1.1817633.
[1] 黄鑫, 段冬平, 刘彬彬, 李炳颖, 丁芳, 王伟, 娄敏. 西湖凹陷花港组绿泥石成因及其对储层物性的影响[J]. 吉林大学学报(地球科学版), 2021, 51(3): 669-679.
[2] 吴蒙, 秦勇, 王晓青, 李国璋, 朱超, 朱士飞. 中国致密砂岩储层流体可动性及其影响因素[J]. 吉林大学学报(地球科学版), 2021, 51(1): 35-51.
[3] 陈祥忠, 王斌. 基于岩石物理模型的裂缝型储层AVOA反演方法[J]. 吉林大学学报(地球科学版), 2021, 51(1): 266-276.
[4] 魏博, 赵建斌, 魏彦巍, 李振林, 熊葵. 福山凹陷白莲流二段储层分类方法[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1639-1647.
[5] 杨坤, 王付勇, 曾繁超, 赵久玉, 王聪乐. 基于数字岩心分形特征的渗透率预测方法[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1003-1011.
[6] 李博南, 曲寿利, 沈珲. 基于岩石物理模型的碳酸盐岩储层微观孔隙特征分析方法[J]. 吉林大学学报(地球科学版), 2020, 50(1): 285-293.
[7] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
[8] 王璐, 杨胜来, 彭先, 刘义成, 徐伟, 邓惠. 缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯-磨溪地区灯四段为例[J]. 吉林大学学报(地球科学版), 2019, 49(4): 947-958.
[9] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[10] 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352.
[11] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[12] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[13] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[14] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[15] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .