吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (3): 941-954.doi: 10.13278/j.cnki.jjuese.20210126

• 地质工程与环境工程 • 上一篇    下一篇

隐伏地裂缝破裂扩展物理模型试验边界效应

亢佳乐1,2, 卢全中1,2,3, 占洁伟1,2,3, 杨天亮4, 沈首秀1   

  1. 1.长安大学地质工程与测绘学院,西安710054

    2.西部矿产资源与地质工程教育部重点实验室,西安710054

    3.自然资源部地裂缝与地面沉降野外科学观测研究站,西安710054

    4.上海市地质调查研究院,上海200072

  • 出版日期:2022-05-26 发布日期:2024-01-05
  • 基金资助:

    国家自然科学基金项目(41877250);自然资源部地面沉降监测与防治重点实验室开放基金(KLLSMP202001);博士后创新人才支持计划项目(BX20200286);长安大学中央高校基本科研业务费专项资金(300102261103)

Boundary Effect of Physical Model Tests on Rupture Propagation of Buried Ground Fissures

Kang Jiale 1,2, Lu Quanzhong1,2,3, Zhan Jiewei1,2,3, Yang Tianliang4,Shen Shouxiu1   

  1. 1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China

    2. Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, Chang’an University,

    Xi’an 710054, China

    3. Observation and Research Station of Ground Fissure and Land Subsidence, Ministry of Natural Resources, Xi’an 710054, China

    4.  Shanghai Institute of Geological Survey, Shanghai 200072, China

  • Online:2022-05-26 Published:2024-01-05
  • Supported by:
    Supported by the National Natural Science Foundation of China (41877250), the Open Fund of Key Laboratory of Land Subsidence Monitoring and Prevention, Ministry of Natural Resources (KLLSMP202001), the National Postdoctoral Program for Innovative Talents (BX20200286) and the Fundamental Research Funds for the Central Universities, Chang’an University (300102261103)

摘要:

物理模型试验是研究地质灾害变形破裂特征、动力学过程和成因机制的有效手段,受制于模型箱尺寸,试验过程中边界效应问题显著,如何减弱边界效应影响一直是研究者所关注的焦点问题。本文以隐伏地裂缝破裂扩展物理模型试验为研究对象,通过物理模型试验现象分析以及数值模拟验证等手段,对物理模型箱体边界效应进行了系统分析。结果表明,模型箱体边界效应的主要控制因素为箱体边壁阻尼与箱体尺寸比,其中:边壁阻尼与边界效应幅值呈正相关,边壁摩擦角小于土体内摩擦角时,黏聚力是边界效应影响的主要因素,边壁摩擦角大于土体内摩擦角时,摩擦力是边界效应影响的主要因素;箱体尺寸比影响边界效应幅值,长宽比与边界效应幅值呈正相关,并确定试验模型箱设计最优尺寸比为5∶3∶2.2。箱体边界效应对隐伏地裂缝破裂扩展物理模型试验结果存在显著影响。


关键词: 隐伏地裂缝, 破裂扩展, 物理模型试验, 数值模拟, 边界效应

Abstract: Physical model test is an effective means to study the deformation and fracture characteristics, dynamic process, and genetic mechanism of geological disasters. Limited by the size of model box, the boundary effect is significant in the test process, so how to reduce the influence of boundary effect has always been the focus of researchers. In this study, the physical model test of the rupture propagation of buried ground fissures was taken as the research object, and the boundary effect of physical model box was systematically analyzed by means of phenomenal analysis of the physical model tests and numerical simulation verification. The results show that the main controlling factor of the boundary effect of the model box is the ratio of sidewall damping to box size. The sidewall damping is positively correlated with the amplitude of the boundary effect. When the sidewall friction angle is smaller than the internal friction angle of the soil, the cohesion is the main factor affecting the boundary effect. When the friction angle of the sidewall is larger than the friction angle of the soil, the friction is the main factor affecting the boundary effect. The box size ratio affects the amplitude of boundary effect, and the aspect ratio is positively correlated with the amplitude of boundary effect. The box boundary effect has a significant influence on the results of the physical model test on the fracture propagation of buried ground fissures. The optimal size ratio of the experimental model box is determined to be 5∶3∶2.2.

Key words: buried ground fissure, rupture propagation, physical model tests, numerical simulation, boundary effect

中图分类号: 

  • P642
[1] 刘鑫, 张文, 李根, 刘波. 高位远程崩滑碎屑流-泥石流灾害链的演变过程与影响范围预测:以“4·5”四川洪雅县铁匠湾地质灾害链为例[J]. 吉林大学学报(地球科学版), 2023, 53(6): 1799-1811.
[2] 左鹏飞, 刘财, 郭智奇, 冯晅. 基于近场动力学理论的裂纹模型波场数值模拟及频散特性分析[J]. 吉林大学学报(地球科学版), 2023, 53(4): 1250-1261.
[3] 张志佳, 孙章庆, 王瑞湖, 韩复兴, 陆济璞, 刘亚光, 岑文攀, 高正辉. 复杂地表起伏多重变加密网格有限差分法波动方程数值模拟[J]. 吉林大学学报(地球科学版), 2023, 53(2): 598-.
[4] 赵一行, 詹刚毅, 石钰锋, 简庆华. 土岩复合地层超深圆形基坑内衬墙作用效果及优化[J]. 吉林大学学报(地球科学版), 2023, 53(2): 526-.
[5] 张延军, 袁学兵, 马跃强, 高雪峰, 高阳. 花岗岩双裂隙热-流耦合参数敏感性[J]. 吉林大学学报(地球科学版), 2022, 52(6): 1971-1981.
[6] 韩丽, 胥铁潇, 金胜昔, 董文宇, 嵇艳鞠.

基于双电层模型的频域震电响应数值模拟 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 737-743.

[7] 冯波, 崔振鹏, 赵璞, 刘鑫, 胡子旭. 基于T2WELL的U型地热井供暖潜力数值模拟[J]. 吉林大学学报(地球科学版), 2022, 52(2): 560-570.
[8] 房亚军, 于川淇, 金鑫. 基于SWMM-CCHE2D耦合模型的海绵城市内涝管控效果评价[J]. 吉林大学学报(地球科学版), 2022, 52(2): 582-591.
[9] 雷怡, 帅飞翔, 孙红月, 张泽坤, 熊超. 边坡负压排水非稳定流研究[J]. 吉林大学学报(地球科学版), 2022, 52(1): 162-.
[10] 韩复兴, 王若雯, 孙章庆, 高正辉. 地震声波数值模拟中人工边界条件的差别与组合[J]. 吉林大学学报(地球科学版), 2022, 52(1): 261-.
[11] 师文豪, 杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1783-1788.
[12] 余莉, 张钰, 王维玉, 韩子豪, 赵拓. 基坑装配式可回收支护和桩锚支护结构的受力与变形分析[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1789-1800.
[13] 魏家斌, 王卫东, 吴江斌. 免共振沉桩过程对地表振动影响的FLAC3D数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1514-1522.
[14] 李立云, 王子英, 王晓静, 杜修力. 近铁路基坑通风井段变形特征及其机制分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1441-1451.
[15] 蔡晓光, 徐洪路, 李思汉, 张少秋. 地震作用下返包式加筋土挡墙数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1416-1426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!