吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1416-1426.doi: 10.13278/j.cnki.jjuese.20200313

• 岩土防灾与减灾 • 上一篇    下一篇

地震作用下返包式加筋土挡墙数值模拟

蔡晓光1,2,3, 徐洪路1, 李思汉4, 张少秋1   

  1. 1. 防灾科技学院地质工程学院, 河北 三河 065201;
    2. 河北省地震灾害防御与风险评价重点实验室, 河北 三河 065201;
    3. 中国地震局建筑物破坏机理与防御重点实验室, 河北 三河 065201;
    4. 中国地震局工程力学研究所/中国地震局地震工程与工程振动重点实验室, 哈尔滨 150080
  • 收稿日期:2020-12-20 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 徐洪路(1996-),男,硕士研究生,主要从事岩土工程抗震研究,E-mail:xuhonglu@163.com E-mail:xuhonglu@163.com
  • 作者简介:蔡晓光(1979-),男,教授,硕士生导师,主要从事岩土工程抗震研究,E-mail:caixiaoguang123@163.com
  • 基金资助:
    国家自然科学基金项目(51778144);河北省在读研究生创新能力培养资助项目(CXZZSS2020150);地震科技星火计划项目(XH204402)

Numerical Simulation of Reinforced Soil Retaining Wall with Wrapped Face Under Seismic Effects

Cai Xiaoguang1,2,3, Xu Honglu1, Li Sihan4, Zhang Shaoqiu1   

  1. 1. College of Geological Engineering, Institute of Disaster Prevention, Sanhe 065201, Hebei, China;
    2. Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, Sanhe 065201, Hebei, China;
    3. Key Laboratory of Building Collapse Mechanism and Disaster Prevention, China Earthquake Administration, Sanhe 065201, Hebei, China;
    4. Institute of Engineering Mechanics/Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration, Harbin 150080, China
  • Received:2020-12-20 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (51778144), Hebei Province Postgraduate Students' Innovative Ability Training Grant Program (CXZZSS2020150) and the Earthquake Science and Technology Starfire Project (XH204402)

摘要: 返包式加筋土挡墙是一种柔性面板挡墙,因其良好的地基适应性及地震安全性广泛应用于交通、市政和水利等诸多领域中。本文使用FLAC3D数值模拟程序对返包式加筋土挡墙墙面坡度、土工袋填料及筋材强度进行了抗震性能研究。研究结果表明:当墙面坡度<1∶0.30时,墙后侧向土压力分布均匀且数值较小,近似于一条竖向直线;当墙面坡度≥1∶0.30时,墙后侧向土压力分布规律一致且符合朗肯土压力理论。因此,当墙面坡度<1∶0.30时,加筋土结构应按加筋土边坡进行设计;当墙面坡度≥1∶0.30时,加筋土结构应按加筋土挡墙进行设计。土工袋填料种类对返包式加筋土挡墙地震动力响应几乎没有影响,在抗震设计时可不考虑其对挡墙的影响。筋材强度越高,返包式加筋土挡墙抗震性能越好,但筋材强度与挡墙的抗震性能不成正比例,由于加筋土结构的"加筋作用饱和"现象,大幅度提升筋材强度并不会使挡墙的抗震性能得到大幅度提升;因此,工程中在保证筋材强度达标的前提下需注意经济性。

关键词: 返包式加筋土挡墙, 数值模拟, 抗震性能, 墙面坡度, 填料类型, 筋材强度

Abstract: Reinforced soil retaining wall with wrapped face is a kind of flexible panel retaining wall, which is widely used in many fields such as transportation, municipal, and water conservancy because of its good foundation adaptability and seismic safety. In this paper, the seismic performance of the reinforced soil retaining wall with wrapped face is investigated by using FLAC3D numerical simulation program to study the slope of the wall, geotechnical bag filler, and reinforcement strength. The results show that when the slope of the wall is less than 1:0.30, the distribution of soil pressure behind the wall is uniform and small, approximately vertical straight line; When the slope of the wall is greater than or equal to 1:0.30, the distribution of soil pressure behind the wall is consistent and in accordance with Rankine earth pressure theory. Therefore, when the wall slope is less than 1:0.30, the structure should be designed according to the reinforced soil slope; When the wall slope is greater than or equal to 1:0.30, the reinforced soil structure should be designed according to the reinforced soil retaining wall. The type of geotechnical bag filler has almost no effect on the seismic dynamic response of the reinforced soil retaining wall with wrapped face, so its effect on the retaining wall can be disregarded in the seismic design. The higher the strength of reinforcement, the better the seismic performance of the reinforced soil retaining wall, however the strength of reinforcement is not proportional to the seismic performance of the retaining wall, so, to greatly increase the strength of reinforcement will not greatly improve the seismic performance of the retaining wall due to the phenomenon of "saturation of reinforcement effect" of reinforced soil structure; Therefore, it is necessary to pay attention to the economical efficiency of the project under the premise that the strength of reinforcement meets the standard.

Key words: reinforced soil retaining wall with wrapped face, numerical simulation, seismic performance, wall slope, geobag filler, strength of geogrid

中图分类号: 

  • TU4
[1] Tatsuoka F, Tateyama M, Koseki J, et al.Geosynthetic-Reinforced Soil Structures for Railways:Twenty Five Year Experiences in Japan[J]. Geotechnical Engineering, 2014, 45(1):1-16.
[2] Huang C C, Chou L H, Tatsuoka F. Seismic Displacement of Geosynthetic Reinforced Soil Modular Block Walls[J]. Geosynthetics International, 2003, 10(1):2-23.
[3] Sandri D. A Performance Summary of Reinforced Soil Structures in the Greater Los Angeles Area After the Northridge Earthquake[J]. Geotextiles and Geomembranes, 1997, 15(4/5/6):235-253.
[4] 杨广庆. 土工合成材料加筋土结构应用技术指南[M]. 北京:人民交通出版社, 2016. Yang Guangqing. Technical Guidelines for the Application of Geosynthetic Reinforced Earth Structures[M]. Beijing:People's Communications Press, 2016.
[5] 杨圣春. 包裹式加筋土挡墙关键参数研究[D]. 成都:西南交通大学, 2009. Yang Shengchun. Research on Key Parameters of Wrapped Reinforced Earth Retaining Wall[D]. Chengdu:Southwest Jiaotong University, 2009.
[6] Sakaguchi M, Muramatsu M, Nagura K. A Discussion on Reinforced Embankment Structures Having High Earthquake Resistance[C]//Proceedings of the International Symposium on Earth Reinforcement Practice. Kyushu:International Symposium on Earth Reinforcement Association, 1992:287-292.
[7] 崔俊杰, 韩会勋. 包裹式加筋土挡土墙稳定性分析探讨[C]//第三届加筋土工程学术研讨会论文集. 重庆:中国土工合成材料工程协会, 1990:18-23. Cui Junjie, Han Huixun. Discussion on Stability Analysis of Wrapped Reinforced Earth Retaining Wall[C]//Proceedings of the 3rd Symposium on Reinforced Soil Engineering. Chongqing:China Technical Association on Geosynthetics, 1990:18-23.
[8] Krishna A M, Latha G M. Modeling the Dynamic Response of Wrap-Faced Reinforced Soil Retaining Walls[J]. International Journal of Geomechanics, 2012, 12(4):439-450.
[9] 朱宏伟, 姚令侃, 刘兆生, 等. 地震作用下柔性挡墙变形特征分析[J]. 岩石力学与工程学报, 2012, 31(增刊1):2829-2838. Zhu Hongwei, Yao Lingkan, Liu Zhaosheng, et al. Analysis of Deformation Characteristics of Flexible Retaining Wall Under Earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup.1):2829-2838.
[10] Bhattacharjee A, Murali K A. Development of Numerical Model of Wrap-Faced Walls Subjected to Seismic Excitation[J]. Geosynthetics International, 2012, 19(5):354-369.
[11] Liu H, Ling H I. Seismic Responses of Reinforced Soil Retaining Walls and the Strain Softening of Backfill Soils[J]. International Journal of Geomechanics, 2012, 12:351-356.
[12] 李广信. 关于土工合成材料加筋设计的若干问题[J]. 岩土工程学报, 2013, 35(4):605-610. Li Guangxin. Some Problems on Reinforcement Design of Geosynthetics[J]. Journal of Geotechnical Engineering, 2013, 35(4):605-610.
[13] Li C, Espinoza R D. Assessment of Reinforced Embankment Stability over Soft Soils Based on Monitoring Results[J]. Geosynthetics International, 2017, 24(3):264-279.
[14] Ardah A, Abu-Farsakh M, Voyiadjis G. Numerical Evaluation of the Performance of a Geosynthetic Reinforced Soil-Integrated Bridge System (GRS-IBS) Under Different Loading Conditions[J]. Geotextiles and Geomembranes, 2017, 45(6):558-569.
[15] 洪勇, 李子睿, 唐少帅, 等. 平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6):1814-1822. Hong Yong, Li Zirui, Tang Shaoshuai, et al. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1814-1822.
[16] 土工合成材料应用技术规范:GB/T 50290-2014[S]. 北京:中国计划出版社, 2014. Technical Specification for Application of Geosynthetics:GB/T 50290-2014[S]. Beijing:China Planning Press, 2014.
[17] 铁路路基设计规范:TB J 447-2016[S]. 北京:国家铁路局, 2016. Code for Design of Railway Subgrade:TB J 447-2016[S]. Beijing:State Railway Administration, 2016.
[18] 水电工程水工建筑物抗震设计规范:NB 35047-2015[S]. 北京:中国电力出版社, 2015. Code for Seismic Design of Hydropower Buildings:NB 35047-2015[S]. Beijing:China Electric Power Engineering Press, 2015.
[19] 公路路基设计规范:ITG D30-2015[S]. 北京:人民交通出版社, 2015. Code for Design of Highway Subgrade:ITG D30-2015[S]. Beijing:People's Communications Press, 2015.
[20] 王博军. 生态袋加筋挡墙工作机理研究[D].天津:河北工业大学, 2014. Wang Bojun. Study on Working Mechanism of Ecological Bag Reinforced Retaining Wall[D]. Tianjin:Hebei University of Technology, 2014.
[21] 刘华北. 水平与竖向地震作用下土工格栅加筋土挡墙动力分析[J]. 岩土工程学报, 2006, 28(5):594-599. Liu Huabei. Dynamic Analysis of Geogrid Reinforced Soil Retaining Wall Under Horizontal and Vertical Earthquake Action[J]. Journal of Geotechnical Engineering, 2006, 28(5):594-599.
[22] 冯复兴. 地震作用下面板对加筋土挡墙稳定性影响研究[J]. 石家庄铁道大学学报(自然科学版), 2014, 27(增刊1):193-195. Feng Fuxing. Research on the Influence of Panel on the Stability of Reinforced Soil Retaining Wall under Earthquake[J]. Journal of Shijiazhuang Railway University (Natural Science Edition), 2014, 27(Sup.1):193-195.
[23] 李思汉. 模块式加筋土挡墙动力反应试验研究及数值分析[D].廊坊:防灾科技学院, 2018. Li Sihan. Test Study and Numerical Analysis of Dynamic Response of Block Reinforced Soil Retaining Wall[D]. Langfang:Institute of Disaster Prevention, 2018.
[24] 路彤. 复合式格宾土工格栅加筋土挡墙动力特性振动台试验分析[D].廊坊:防灾科技学院, 2019. Lu Tong. Shaking Table Test Analysis of Dynamic Characteristics of Composite Gabion and Geogrid Reinforced Soil Retaining Wall[D]. Langfang:Institute of Disaster Prevention, 2019.
[25] Koseki J. Use of Geosynthetics to Improve Seismic Performance of Earth Structures[J]. Geotextiles & Geomembranes, 2012, 34:51-68.
[26] 刘国勇, 邓杰文, 张继平. 基于FLAC3D的返包式砂泥岩加筋挡墙稳定性分析[J]. 路基工程, 2015(2):67-70. Liu Guoyong, Deng Jiewen, Zhang Jiping. Stability Analysis of Sand Shale Reinforced Retaining Wall Based on FLAC3D[J]. Subgrade Engineering, 2015(2):67-70.
[27] Yu Y, Bathurst R J, Allen T M. Numerical Modelling of Two Full-Scale Reinforced Soil Wrapped-Face Walls[J]. Geotextiles & Geomembranes, 2017, 45(4):237-249.
[28] Bhattacharjee A, Krishna A M. Development of Numerical Model of Wrap-Faced Walls Subjected to Seismic Excitation[J]. Geosynthetics International, 2012, 19(5):354-369.
[29] 杨广庆. 加筋挡土墙合理设计方法的探讨[J]. 长江科学院院报, 2014, 31(3):11-18. Yang Guangqing. Discussion on Reasonable Design Method of Reinforced Retaining Wall[J]. Journal of Yangtze River Academy of Sciences, 2014, 31(3):11-18.
[30] 牛笑笛, 杨广庆, 王贺, 等. 不同面板形式加筋土挡墙结构特性现场试验研究[J]. 岩土力学, 2021, 42(1):1-11. Niu Xiaodi, Yang Guangqing, Wang He, et al. Field Test Study on Structural Characteristics of Reinforced Soil Retaining Wall with Different Panel Forms[J]. Geotechnical Mechanics, 2021, 42(1):1-11.
[1] 师文豪, 杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1783-1788.
[2] 余莉, 张钰, 王维玉, 韩子豪, 赵拓. 基坑装配式可回收支护和桩锚支护结构的受力与变形分析[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1789-1800.
[3] 李立云, 王子英, 王晓静, 杜修力. 近铁路基坑通风井段变形特征及其机制分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1441-1451.
[4] 魏家斌, 王卫东, 吴江斌. 免共振沉桩过程对地表振动影响的FLAC3D数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1514-1522.
[5] 李一赫, 王殿举, 于法浩, 刘志强. 下刚果盆地白垩系盐构造的形成演化[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1628-1638.
[6] 吕雅馨, 骆祖江, 徐成华. 南京汤山地区地热水资源评价[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1844-1853.
[7] 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138.
[8] 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172.
[9] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[10] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[11] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[12] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[13] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[14] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[15] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .