突水灾害,电阻率,岩石物理量板,定量预测
," /> 突水灾害,电阻率,岩石物理量板,定量预测
,"/> <span>煤系岩石电性特征与含水饱和度定量关系实验——以山西宁武榆树坡为例</span>

吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (5): 1724-1735.doi: 10.13278/j.cnki.jjuese.20240006

• 地球探测与信息技术 • 上一篇    下一篇

煤系岩石电性特征与含水饱和度定量关系实验——以山西宁武榆树坡为例

李建光1,孙超2,蔡来星3,屈少波4,童雪瑞2,窦中浩2,姜志海2   

  1. 1. 晋能控股装备制造集团有限公司,山西晋城048000

    2. 中国矿业大学资源与地球科学学院,江苏徐州221116

    3. 成都理工大学沉积地质研究院,成都610059

    4. 山西宁武榆树坡煤业有限公司,山西宁武036700

  • 出版日期:2024-09-26 发布日期:2024-10-12
  • 基金资助:

    国家自然科学基金项目(42104111,42230811);国家重点研发计划项目(2023YFC3008901);油气资源与探测国家重点实验室开放课题(PRP/open 2207);徐州市科技局青年人才项目(KC22018)

Experiment  on Quantitative Relationship Between Electrical Properties and Water Saturation of Coal-Bearing Rocks: A Case Study of Yushupo in Ningwu, Shanxi

Li Jianguang1, Sun Chao2, Cai Laixing3, Qu Shaobo4,Tong Xuerui2, Dou Zhonghao2, Jiang Zhihai2   

  1. 1. Jinneng Holding Equipment Manufacturing Group, Jincheng 048000, Shanxi, China

    2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

    3. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China

    4. Yushupo Coal Industry Co., Ltd., Ningwu 036700, Shanxi, China

  • Online:2024-09-26 Published:2024-10-12
  • Supported by:
    Supported by the National Natural Science Foundation of China (42104111, 42230811), the National Key Research and Development Program of China (2023YFC3008901), the State Key Laboratory of Oil and Gas Resources and Exploration Open Project (PRP/open 2207) and the Science and Technology Bureau Young Talents Project of Xuzhou (KC22018)

摘要:

煤层含水量定量预测对于解决矿井水灾害问题、提升煤矿防治水技术水平、降低煤矿防治水经济成本投入以及提高煤矿安全与经济效益具有重要意义。为实现煤层含水量定量预测,本文选用山西宁武榆树坡5煤顶板石炭系上统太原组富水区岩石,测量其物性及电阻率参数;基于测量结果,分析确定Archie参数,建立岩石物理量板,确定电性参数与含水饱和度、储层压力、岩性以及孔隙的定量关系。研究表明:1)煤层顶板岩石具有低孔低渗特征。2)储层有效压力对煤层顶板岩石电阻率具有影响,有效压力增加导致低频段(10 Hz)电阻率降低,但对高频段(100 kHz)电阻率几乎无影响。3)含水饱和度对煤层顶板岩石电阻率影响显著,含水饱和度增加导致低频段电阻率降低,但对高频段电阻率影响微弱;低含水饱和度对电阻率频散影响更明显,高含水饱和度对电阻率频散影响相对微弱,全饱和状态下无电阻率频散影响。4)煤层顶板岩性以砂岩为主,同时存在泥岩、灰岩等,岩性差异对干燥和饱和水样品均有显著影响,不同岩性之间的电阻率差异可达两个量级。5)胶结指数、饱和度指数以及岩性系数均随深度变化,但变化率相对平缓,以其平均值构建的岩石物理量板对含水饱和度能够进行有效预测。


关键词: 突水灾害')">

突水灾害, 电阻率, 岩石物理量板, 定量预测

Abstract:

The quantitative prediction of water content in coal seams is of significant importance for solving the problems of water disasters in mines, improving the technological level of water prevention and control in coal mines, reducing the economic costs of water prevention and control, and enhancing the safety and economic benefits of coal mines. In order to realize the quantitative prediction of coal seam water content, this paper selects the rock of the Carboniferous Taiyuan Formation aquiferous area above the No. 5 coal seam roof in Ningwu Yushupo, Shanxi, and measures its physical properties and resistivity parameters. Based on the measurement results, the parameters in the Archies formula are analyzed and determined, and the rock physics model is established to quantify the relationship between electrical parameters and water saturation, reservoir pressure, lithology and pores. The study shows that: 1) The rock of the coal seam roof has the characteristics of low porosity and low permeability. 2) The effective pressure of the reservoir affects the resistivity of the coal seam roof rock.The increase of effective pressure leads to the  decrease of the  resistivity at low frequencies, but has almost no effect on the resistivity at high frequencies. 3) Water saturation significantly influences the resistivity of the coal seam roof rock. An increase in water saturation causes a decrease in resistivity at low frequencies, but has a weak effect on high-frequency resistivity. Low water saturation has a more significant impact on resistivity dispersion,  high water saturation has a relatively weak effect on resistivity dispersion,  and full saturation has no effect on resistivity dispersion. 4) The lithology of the coal seam roof is mainly sandstone, with the presence of mudstone, limestone, etc. Lithological differences have a significant impact on both dry and water-saturated samples, and the resistivity difference between different lithologies can reach two orders of magnitude. 5) Cementation index, saturation index, and lithology coefficient all change with depth, but at a relatively steady rate, and the water saturation can be effectively predicted by the rock physics model constructed by its average value.

Key words: water inrush disaster, resistivity, rock physics model, quantitative prediction

中图分类号: 

  • P631.8
[1] 宋俊磊, 周丹, 肖国强, 周华敏, 董凯锋, 晋芳, 莫文琴, 惠亚娟. 面向渗漏探测的堤防磁场分布特性分析[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1362-1372.
[2] 徐俊杰, 陈松, 刘广宁, 刘道涵, 余绍文. 鄱阳湖湖滨多宝沙山成因机制[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1383-1395.
[3] 胡向阳, 秦 敏, 张恒荣, 杨 冬, 袁 伟. 基于SVR的定向井随钻电磁波测井层厚影响快速计算[J]. 吉林大学学报(地球科学版), 2023, 53(2): 589-.
[4] 叶青, 王晓, 杜学彬, 解滔, 范晔, 周振贵, 刘高川.

中国地震井下地电阻率研究进展 [J]. 吉林大学学报(地球科学版), 2022, 52(3): 669-683.

[5] 周越, 曾昭发, 唐海燕, 张建民, 何滔. 公路勘察中滑坡体的地球物理特征与分析——以张榆线公路勘察为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 638-644.
[6] 秦敏, 申辉林, 丁磊, 刘欢, 黄信雄, 章利民. 基于微元动态物质平衡法模型确定水淹层混合液电阻率[J]. 吉林大学学报(地球科学版), 2020, 50(3): 919-928.
[7] 束龙仓, 王明昭, 张惠潼, 张含明, 张乃鹏, 孙影, 孙超, 袁鹏杰. 咸淡水界面位置确定的综合方法(TEcG)及其应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1706-1713.
[8] 朱广祥, 郭秀军, 余乐, 孙翔, 贾永刚. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1457-1465.
[9] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[10] 杨志龙, 殷长春, 张博, 刘云鹤, 任秀艳, 惠哲剑. 全拖曳式深海直流电阻率法三维任意各向异性正演模拟[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1845-1853.
[11] 吴景鑫, 郭秀军, 贾永刚, 孙翔, 李宁. 天然气水合物开采过程甲烷气泄漏海床基高密度电阻率法监测效果模拟与分析[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1854-1864.
[12] 宁亚灵, 许家姝, 解滔, 张国苓, 卢军. 大柏舍深井地电阻率观测布极方式分析[J]. 吉林大学学报(地球科学版), 2018, 48(2): 525-533.
[13] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[14] 李世文, 殷长春, 翁爱华. 时间域航空电磁电阻率和磁导率全时反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1830-1836.
[15] 高建申, 孙建孟, 姜艳娇, 崔利凯. 侧向测井电极系结构影响分析及阵列化测量新方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1874-1883.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!