吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (6): 1883-1896.doi: 10.13278/j.cnki.jjuese.20240248

• 地质与资源 • 上一篇    下一篇

 珠江口盆地开平凹陷南部区域中深层原油地球化学特征及成因

高阳东1, 龙祖烈2,3, 陈聪2,3 , 姜大朋2,3 , 马宁2,3    

  1. 1.中海石油(中国)有限公司勘探开发部,北京100010
    2.中海石油(中国)有限公司深圳分公司,广东深圳518054
     3.中海石油深海开发有限公司,广东深圳518054

  • 出版日期:2024-11-26 发布日期:2024-12-13
  • 通讯作者: 陈聪(1987),男,高级工程师,主要从事油气地化与成藏综合方面的研究,E-mail:chencong8@cnooc.com.cn
  • 作者简介:高阳东(1975—),男,教授级高工,主要从事油气地质与油气勘探综合方面的研究,E-mail: gaoyd@cnooc.com.cn
  • 基金资助:
    中国海洋石油有限公司“十四五”重大科技项目(KJGG2021-0100)

 Geochemical Characteristics and Genesis of Middle and Deep Oil in Southern Region of Kaiping Sag, Pearl River Mouth Basin

Gao Yangdong 1,Long Zulie2,3,Chen Cong2,3,Jiang Dapeng2,3,Ma Ning2,3   

  1. 1. Exploration and Development Department, CNOOC China Limited, Beijing 100010, China
    2. CNOOC China Limited, Shenzhen Branch,  Shenzhen 518054, Guangdong, China
    3. CNOOC Deepwater Development Limited,  Shenzhen 518054, Guangdong, China
  • Online:2024-11-26 Published:2024-12-13
  • Supported by:
    Supported by the Major Science and Technology Project of CNOOC During the 14th Five-Year Plan Period (KJGG2021-0100)

摘要: 为了分析珠江口盆地开平凹陷原油地球化学特征,明确该区域的油气来源与分布规律,本研究基于开平凹陷南部区域中深层原油及烃源岩的地球化学实验分析测试资料,开展了地球化学特征、原油成因与来源,以及烃源岩评价及分子地球化学特征分析。结果表明:开平凹陷南部区域原油为高含蜡量、轻—中质原油。开平凹陷南部K18-1和K11-4含油气构造原油的地球化学特征较为类似,均具有C21TT或C23TT优势,较低的奥利烷含量,以及C27、C29规则甾烷优势,并有4-甲基C30甾烷的分布,表明该区域原油具有藻类水生生物和陆源高等植物贡献,但K18-1和K11-4含油气构造的原油生烃母质不甚相同。K18-1含油气构造的原油较为特殊,与K11-4和其他区域原油均具有一定差异,奥利烷含量较低,C21TT/C19+20TT指数较高,为较为典型的湖相原油;K11-4含油气构造的原油则与开平凹陷等其他区域的原油相类似,奥利烷含量较高,C21TT/C19+20TT较低,为偏河流-三角洲相原油。开平凹陷南部区域不同层段烃源岩的地球化学特征差异较大,文昌组下段为Ⅰ—Ⅱ2型有机质湖相烃源岩,文昌组上段—恩平组为Ⅱ1—Ⅲ型三角洲煤系烃源岩,前者的有机质丰度及生烃潜力均优于后者。基于上述研究,结合油-源生物标志化合物参数对比及烃源岩的生烃潜力评价,综合认为开平凹陷南部区域原油主要来源于各自含油气构造下伏的文昌组下段烃源岩。开平凹陷南部区域具有较为优质的烃源条件,勘探前景较好。


关键词: 开平凹陷, 地球化学, 油源对比, 原油成因, 烃源岩, 珠江口盆地

Abstract:  To analyze the geochemical characteristics of crude oil in the Kaiping sag of the Pearl River Mouth basin and to ascertain the hydrocarbon sources for more scientific and rational exploration and development strategies, this study conducted an analysis of geochemical features, crude oil genesis, and sourcing based on geochemical experimental analysis and testing data of crude oil and source rocks from the middle-deep layers in the southern region of the Kaiping sag. The results indicate that the crude oil in the southern Kaiping sag is characterized by high wax content and light-to-medium density. The crude oil from the K18-1 and K11-4 hydrocarbon-bearing structures in the southern Kaiping sag exhibits similar geochemical features, including a dominance of C21TT or C23TT, low oleanane content, a preference for C27 and C29 regular steranes, and the presence of 4-methyl C30 sterane, suggesting a contribution from both algal aquatic organisms and terrestrial higher plants. However, there are still certain differences in organic matter input and depositional environments between the hydrocarbon-generating precursors of the crude oil from the two hydrocarbon-bearing structures. The crude oil from the K18-1 hydrocarbon-bearing structure is relatively unique, differing from that of K11-4 and other regions. It has low oleanane content and a high C21TT/C19+20TT index, indicating it is a typical lacustrine crude oil. In contrast, the crude oil from the K11-4 hydrocarbon-bearing structure is similar to that from other regions in the Kaiping sag, with relatively high oleanane content and a lower C21TT/C19+20TT index, suggesting it is more fluvial-deltaic in nature. An evaluation of source rocks and an analysis of molecular geochemical characteristics indicate that there are significant differences in the geochemical features of source rocks from different intervals in the southern Kaiping sag. The lower member of the Wenchang Formation consists of Type Ⅰ-Ⅱ2 organic matter lacustrine source rocks, while the upper member of the Wenchang Formation to the Enping Formation comprises Type Ⅱ1-Ⅲ deltaic coal-measure source rocks. The former exhibits superior organic matter abundance and hydrocarbon generation potential compared to the latter. Based on an analysis of the depositional environments, organic matter sources, and maturity levels of crude oil and source rocks, combined with a comparison of oil-source biomarker compound parameters and an analysis of the hydrocarbon generation potential of source rocks, it is believed that the crude oil in the southern Kaiping sag primarily originates from the lower member of the Wenchang Formation underlying the respective hydrocarbon-bearing structures. The southern Kaiping sag possesses relatively high-quality hydrocarbon source conditions and exhibits favorable exploration prospects.


Key words:  , Kaiping sag, geochemistry, oil-source rock correlation, origin of crude oil, source rock, Pearl River Mouth basin

中图分类号: 

  • TE122
[1] 单玄龙, 王志豪, 卫哲, 张朋霖, 郝国丽, 闫博. 珠江口盆地白云凹陷始新统物源体系展布特征[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1896-1911.
[2] 卫哲, 向绪洪, 谢世文, 张朋霖, 单玄龙. 珠江口盆地白云凹陷古近系源-汇系统耦合及时-空演化[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1927-1939.
[3] 王安, 胡明毅, 高家俊, 杨亮, 邢济麟. 松南长岭凹陷青山口组一段泥页岩元素地球化学特征及古环境意义[J]. 吉林大学学报(地球科学版), 2024, 54(6): 2075-2088.
[4] 张向涛, 张丽丽 , 胡杰, 张青林, 张涛, 郑文义, 魏成豪. 珠江口盆地深水区白云南洼-荔湾凹陷新生代构造-热演化模拟[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1912-1926.
[5] 单玄龙, 徐长贵, 衣健, 牛成民, 郝国丽, 郭剑南, 闫博. 中国近海典型含油气盆地中生代岩浆活动与岩浆岩潜山油气藏[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1773-1787.
[6] 郝国丽, 蒋迪娅, 许风光, 张昊, 金艳, 刘洋. 珠江口盆地恩平凹陷西南部火山岩相和火山机构特征及其分布控制因素[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1951-1967.
[7] 马凌, 单玄龙, 向绪洪, 郝国丽, 张朋霖, 闫博, 衣健. 珠江口盆地白云凹陷裂陷期断裂活动特征与动力学机制[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1968-1985.
[8] 孙旭, 孙永河, 郑金云, 蔡嵩, 张慧敏, 李明, 魏建光. 珠江口盆地陆丰X洼断裂系统变形机制及其控洼-控源作用[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1986-1997.
[9] 马永坤, 徐乐意, 孙辉 , 汪晓萌, 李晓艳, 周凤娟. 珠江口盆地白云凹陷储层成岩特征及中深层储层勘探潜力[J]. 吉林大学学报(地球科学版), 2024, 54(6): 1940-1950.
[10] 惠瑞瑞, 刘妍, 张志升, 张治东, 李斌, 郭爱华. 鄂尔多斯盆地安塞地区延长组长9段原油地球化学特征与油源对比[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1468-1481.
[11] 徐鑫, 刘阳, 张勇, 褚小磊, 徐智恺, 孙景贵, 刘晨. 大兴安岭东坡中北段六九山斑岩铜成矿系统浅成岩成因与地球动力学背景[J]. 吉林大学学报(地球科学版), 2024, 54(5): 1558-1574.
[12] 张坤, 史冬岩, 常翔鲲, 朴星海, 王伟东. 伸展背景下的埃达克质岩:黑龙江呼玛地区早白垩世侵入岩的年代学和地球化学特征[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1248-1263.
[13] 于跃江, 赵忠海, 李新鹏, 马丽玲. 张广才岭北部早侏罗世花岗岩年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1224-1247.
[14] 李康, 单玄龙, 郝国丽, 热西提·亚力坤, 徐川, 沈梦蓉. 珠江口盆地西江凹陷裂陷期构造转换[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1095-1109.
[15] 韩云浩, 朱光有, 张志遥, 姜振学. 原油中痕量化合物的研究进展[J]. 吉林大学学报(地球科学版), 2024, 54(3): 735-751.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[4] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[5] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[6] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[7] 王谦,吴志芳, 张汉泉,莫修文. 随机分形在刻划储层非均质特性中的应用[J]. J4, 2005, 35(03): 340 -0345 .
[8] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[9] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[10] 杨晓平,李仰春,柳 震, 汪 岩,王洪杰. 黑龙江东部鸡西盆地构造层序划分与盆地动力学演化[J]. J4, 2005, 35(05): 616 -621 .