李小虎1, 2, 3,汤中立1, 4,初凤友2, 3
LI Xiao-hu1, 2, 3, TANG Zhong-li1, 4, CHU Feng-you2, 3
摘要: 对金昌矿区不同区域土壤5~20 cm层中重金属各化学形态及活性态的迁移行为进行了研究,结果表明:土壤中重金属不同化学形态迁移率不同,弱酸提取态、可还原态、可氧化态和残渣态平均迁移率分别为0.13、0.51、0.30和0.54。重金属总量和活性态(包括弱酸提取态、可还原态、可氧化态)迁移率也表现出很大差异,尾矿区土壤Cr总量迁移率较高为0.65,而其活性态迁移率较低为0.26,Ni与Cr迁移特征完全相反,总量迁移率为0.26,而活性态迁移率为0.67;农田土壤中Pb总量迁移率低而活性态迁移率高,Ni与Zn特征相似,总量迁移率高而活性态迁移率相对较低;大棚地土壤中重金属迁移率均较低,Cu和Ni活性态几乎未发生向下迁移。可见,重金属的迁移与其化学形态分布关系密切,与重金属总量的迁移率相比,活性态迁移率能够更有效地反映出土壤中重金属的迁移特征和潜在危害性。
中图分类号:
[1] | 代杰瑞, 喻超, 张明杰, 董建, 胡雪平. 淄博市区大气颗粒物重金属元素分布特征及其来源分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1201-1211. |
[2] | 徐军, 郝立波, 赵新运, 赵玉岩, 马成有, 魏俏巧, 吴超, 石厚礼. 松花江上游表层沉积物中重金属元素时空分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 854-862. |
[3] | 王焱, 鹿琪, 刘财, 佘松盛, 刘四新. 利用GPR天线-目标极化的瞬时属性分析方法探测LNAPL污染土壤[J]. 吉林大学学报(地球科学版), 2018, 48(2): 491-500. |
[4] | 陆继龙, 刘奇志, 王春珍, 蔡波, 郝立波, 尹业长, 赵玉岩. 二道松花江沉积物重金属特征及其潜在生态风险[J]. 吉林大学学报(地球科学版), 2018, 48(2): 566-573. |
[5] | 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192. |
[6] | 熊凯, 宫兆宁, 张磊, 赵文吉. 再生水补水条件下土壤全氮空间分布特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1829-1837. |
[7] | 李永涛, 郭高山, 顾延生, 韦林, 何思远. 钢厂周边污染土壤的电性与磁性特征及其环境意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1543-1551. |
[8] | 卞建民, 刘彩虹, 杨晓舟. 吉林西部大安灌区土壤贮水能力空间变异特征及土壤水分有效性[J]. 吉林大学学报(地球科学版), 2017, 47(2): 554-563. |
[9] | 周长松, 邹胜章, 李录娟, 朱丹尼, 卢海平, 夏日元. 岩溶区典型石灰土Cd形态指示意义及风险评价——以桂林毛村为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 552-562. |
[10] | 赵建如, 初凤友, 金路, 杨克红, 葛倩. 珠江口西部海域表层沉积物重金属元素多尺度空间变化特征[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1772-1780. |
[11] | 曹玲珑,王建华,黄楚光,倪志鑫,金钢雄,瓦西拉里,陈慧娴. 大亚湾表层沉积物重金属元素形态特征、控制因素及风险评价分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1988-1999. |
[12] | 代杰瑞,喻超,张杰,宁振国,王增辉,程鑫. 山东半岛蓝色经济区土壤有机碳储量及固碳潜力分析[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1659-1668. |
[13] | 陈圣波,李鑫龙,陈磊. 基于地面实测光谱的水系沉积物重金属含量反演[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1388-1394. |
[14] | 张明,陈国光,高超,杨辉,刘红樱,梁晓红,尹爱经,张徐. 华东多目标区域地球化学调查区土壤常量元素地球化学特征[J]. 吉林大学学报(地球科学版), 2014, 44(3): 995-1002. |
[15] | 汤洁,梁爽,张豪,吴佳曦,娄云. 吉林西部盐碱水田区冻融期土壤水盐运移特征及酶活性变化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 636-644. |
|