吉林大学学报(地球科学版) ›› 2013, Vol. 43 ›› Issue (1): 1-12.

• 地质与资源 •    下一篇

再论陆相三级层序内四分方案及其在油气勘探中的应用

刘招君1,2, 胡菲1,孙平昌1,孟庆涛1,2,柳蓉1,2   

  1. 1.吉林大学地球科学学院,长春130061;
    2.吉林省油页岩及共生能源矿产重点实验室,长春130061
  • 收稿日期:2012-09-13 出版日期:2013-01-26 发布日期:2013-01-26
  • 作者简介:刘招君(1951-),男,教授,博士生导师,主要从事层序地层学、含油气盆地分析、油页岩成矿理论、资源评价与综合利用研究,E-mail:liuzj@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(40972076);国家潜在油气资源(油页岩勘探开发利用)产学研用合作创新建设项目(OSR-01);吉林省科技引导计划(青年科研基金)项目(201101022);吉林大学科学前沿与交叉学科创新项目(201003012);吉林大学创新团队建设项目(201004001);高等学校博士学科点专项科研基金项目(新教师类)(20110061120066)

Re-Discussion on the Four Division Scheme About Continental Sequence Stratigraphy and Its Application on Oil and Gas Exploration

Liu Zhaojun1,2, Hu Fei1, Sun Pingchang1, Meng Qingtao1,2, Liu Rong1,2   

  1. 1.College of Earth Sciences, Jilin University, Changchun130061, China;
    2. Key Laboratory for Oil Shale and Coexistent Energy Minierals of Jilin Province, Changchun130061, China
  • Received:2012-09-13 Online:2013-01-26 Published:2013-01-26

摘要: 结合在陆相盆地中的实例研究,将一个发育完整的陆相三级层序细分为4个体系域:低水位体系域(LST)、水进体系域(TST)、高水位体系域(HST)和水退体系域(RST),称为I型层序。或者一个层序可以不发育低水位体系域,而由水进体系域、高水位体系域和水退体系域组成,称为II型层序。低水位体系域发生在湖平面(基准面)快速下降时期;水进体系域出现在首次湖泛面到最大湖泛面之间;高水位体系域形成在高水位时期的湖平面相对静止期;水退体系域形成在湖平面缓慢下降期,在沉积物供给速率大于可容空间增加速率时形成。一般低水位体系域发育小型进积式准层序组,纵向沉积环境变浅,在盆地边缘形成河流下切作用;水进体系域发育退积式准层序组,沉积环境自下而上明显变深;高水位体系域发育加积型准层序组,纵向沉积环境变化不大,且多为静水沉积;水退体系域发育大型进积式准层序组,沉积环境自下而上明显变浅,沉积体系向盆地中心推进。结合对松辽盆地的实例研究,分别阐述了断陷盆地和坳陷盆地中各不同体系域的油气藏分布规律:低水位体系域主要在断陷盆地的陡坡侧和坳陷盆地的深水区发育透镜状岩性油气藏;水进体系域主要在断陷盆地的陡坡带发育上倾尖灭型岩性油气藏,在缓坡带和坳陷盆地的斜坡带发育地层超覆油气藏;高水位体系域主要以深水区的透镜状岩性油气藏为主;水退体系域在断陷盆地中主要发育地层不整合遮挡油气藏,在坳陷盆地中主要发育断块油气藏以及断层遮挡油气藏。从而,以理论与实践相结合的方式,阐明了陆相层序四分体系域的实用性。

关键词: 四分体系域, 成因机制, 识别标志, 油气藏分布规律, 油气, 松辽盆地

Abstract: Utilizing the practical study on the continental basins,the authors divide the whole third-order sequence into four systems tracts, which are lowstand systems tract (LST), transgressive systems tract (TST), highstand systems tract (HST) and regressive systems tract (RST),named sequence type I. If LST is undeveloped in a thirdorder sequence, it forms the assemblages of TST, HST and RST,named sequence type II. LST occurred in the rapid declining period of lake level (base level). TST appeared with first lake flooding surface and maximum lake flooding surface. HST formed in the relative static high lakelevel period. RST formed in the gradual lake-level fall stage, and the supplying rate of sediments was more than the increasing rate of accommodation space at that time. Generally, LST consists of small scale progradational parasequence sets, vertically, the sedimentary environment is shallower, and river downcutting forms in the basin margin. TST consists of retrogradational parasequence sets, and the sedimentary environment becomes deeper from bottom to up. HST consists of aggradational parasequence sets, and the sedimentary environment changes little or is in standing water. RST consists of large scale progradational parasequence sets, and the sedimentary environment becomes shallower from bottom to up. Finally, the practical study on Songliao basin has been introduced to respectively expound the distribution regularities of oil and gas reservoirs in different system tracts in depression basin and fault basin. LST develops mainly lens-shaped lithologic reservoirs in the steep slope side of fault basin and deep-water area of depression basin. TST forms mainly updip thin away type lithologic oil & gas reservoirs in steep slope belt of fault basin, and forms stratigraphic overlap lithologic oil & gas reservoirs in the gentle slope belt of fault basin and slope zone of depression basin. HST mainly consists of lens-shaped lithologic reservoirs in deep-water area. RST develops mainly stratigraphic unconformity screened oil and gas reservoirs in fault basin, and developes fault block reservoirs and fault screened oil & gas reservoirs in depression basin.Thus, in the combination of theory and the practice, the practicality of the four division about continental sequence stratigraphy has been illustrated.

Key words: four division of system tracts, genetic mechanism, identification marks, distribution regularity of oil and gas reservoirs, petroleum, Songliao basin

中图分类号: 

  • P618.13
[1] 牟敦山, 付广, 陈雪晴. 南堡1号构造馆三段断盖配置油气渗漏部位及其控藏作用[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1008-1017.
[2] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965-980.
[3] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[4] 舒晴, 朱晓颖, 高维, 李瑞, 尹航. 三塘湖盆地航磁异常特征及油气远景预测[J]. 吉林大学学报(地球科学版), 2018, 48(2): 451-460.
[5] 姚刚, 董向欣, 李丽丽, 马国庆, 孟令顺. 东海陆架盆地构造划分的高精度重磁解释技术[J]. 吉林大学学报(地球科学版), 2018, 48(2): 517-524.
[6] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[7] 马国庆, 孟庆发, 黄大年. 基于重力异常的松辽盆地构造特征识别[J]. 吉林大学学报(地球科学版), 2018, 48(2): 507-516.
[8] 蔡来星, 卢双舫, 肖国林, 王蛟, 吴志强, 郭兴伟, 侯方辉. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1): 15-28.
[9] 杨德相, 付广, 孙同文, 李熹微, 姜海燕, 刘滨莹. 油源断裂优势通道输导油气能力综合评价方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1678-1686.
[10] 马德龙, 何登发, 魏东涛, 王彦君, 魏彩茹. 准噶尔盆地南缘古牧地背斜多期构造变形特征[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1695-1704.
[11] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
[12] 张博为, 付广, 张居和, 胡明, 刘峻桥, 王浩然. 油源断裂转换带裂缝发育及其对油气控制作用——以冀中坳陷文安斜坡议论堡地区沙二段为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 370-381.
[13] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[14] 高翔, 刘志宏, 聂志阳, 姚勇, 贾卧, 王超, 宋健. 松辽盆地大庆长垣形成时间的厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 74-83.
[15] 李博南, 刘财, 郭智奇. 基于等效介质模型和频变AVO反演的裂缝储层参数估算方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 234-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!