吉林大学学报(地球科学版)

• 地质工程与环境工程 • 上一篇    下一篇

闽江河口区水体中镭的分布特征及河水与海水的混合速率

刘花台,郭占荣,高爱国,袁晓婕,李开培,章斌,马志勇   

  1. 厦门大学环境与生态学院,福建 厦门361005
  • 收稿日期:2013-04-26 出版日期:2013-11-26 发布日期:2013-11-26
  • 作者简介:刘花台(1967-),女,副教授,主要从事海岸带水文地质学和环境科学的研究,E-mail:lht@xmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(40672166,41072174);福建省重点基金项目(2009I0025)

Distribution Characteristics of Radium and Determination of Transport Rate in the Min River Estuary Mixing Zone

Liu Huatai,Guo Zhanrong,Gao Aiguo,Yuan Xiaojie,Li Kaipei,Zhang Bin,Ma Zhiyong   

  1. College of the Environment and Ecology, Xiamen University, Xiamen361005, Fujian, China
  • Received:2013-04-26 Online:2013-11-26 Published:2013-11-26

摘要:

入海河口中河水与海水的混合是海洋学中一个重要的界面过程,两者混合尺度和混合速率关系到河流携带物质的扩散范围和归宿,采用天然示踪剂224Ra和226Ra计算河水与海水的混合速率。2010年8月28日,采集了闽江河口区地下水样20个、河水样13个、河水与海水的混合水样12个,分别测量了每个水样的盐度、224Ra活度和226Ra活度。结果表明:地下水中224Ra、226Ra活度普遍高于河水;所有水体中的224Ra活度普遍都高于226Ra活度;河水遇到海水后,224Ra活度出现较大幅度的增加,而226Ra活度的增加并不明显。基于224Ra与226Ra半衰期的差异,在只有河水与海水发生涡流混合的情况下,计算获得河水与海水的混合速率为140.2~142.5 m/h。

关键词: 地下水, 河水, 海水, 224Ra, 226Ra, 混合速率, 闽江河口

Abstract:

The mixing between river water and seawater is a key interface process in the estuary.The mixing scale and rate concern the dispersion range and fate of the material transported by river. The aim of this paper is to calculate the transport rate of river plume in the estuary by using naturally occurring tracer 224Ra and 226Ra. In August 2010, we collected twenty groundwater samples, thirteen river water samples and twelve mixing samples in the estuary to measure the salinity,224Ra and 226Ra activities. The results showed that,1)224Ra and 226Ra activities in the groundwater samples were generally higher than those in the river water samples; 2)224Ra activity was generally higher than 226Ra activity in every sample; 3)224Ra activity largely increased when river water mixed with seawater, however,226Ra activity increased slightly. Based on the differences of radioactive half-life between 224Ra and 226Ra, and only eddy diffusion mixture occurring between river water and seawater, the transport rate for river plume in the estuary was calculated to be 140.2-142.5 m/h.

Key words: groundwater, river water, seawater, 224Ra, 226Ra, transport rate, Min River estuary

中图分类号: 

  • P641.3
[1] 董军, 徐暖, 刘同喆, 管锐, 邓俊巍. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1): 234-240.
[2] 黄星, 路莹, 刘肖, 段晓飞, 朱利民. 地下水位抬升对人工回灌中悬浮物堵塞的影响[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1810-1818.
[3] 董维红, 孟莹, 王雨山, 武显仓, 吕颖, 赵辉. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553.
[4] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[5] 刘国庆, 吴时强, 范子武, 周志芳, 谢忱, 乌景秀, 柳杨. 回灌与回扬物理过程的解析推导及灌压变化规律[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1799-1807.
[6] 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829.
[7] 袁晓婕, 郭占荣, 黄磊, 章斌, 马志勇, 刘洁. 用镭-226示踪胶州湾的海底地下水排泄[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1490-1500.
[8] 杨悦锁, 张戈, 宋晓明, 温玉娟, 张文卿. 地下水和土壤环境中雌激素运移和归宿的研究进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1176-1190.
[9] 陈盟, 吴勇, 高东东, 常鸣. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 831-843.
[10] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[11] 危润初, 肖长来, 方樟. 黑龙江建三江地区地下水动态趋势突变点分析[J]. 吉林大学学报(地球科学版), 2016, 46(1): 202-210.
[12] 赵林, 莫惠婷, 郑义. 滨海盐碱地区包气带中淡水透镜体维持机理[J]. 吉林大学学报(地球科学版), 2016, 46(1): 195-201.
[13] 蒋秀姿, 文宝萍, 蒋树, 冯传煌, 赵成, 李瑞冬. 甘肃舟曲锁儿头滑坡活动的主控因素分析[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1798-1807.
[14] 吴鸣, 吴剑锋, 施小清, 刘杰, 陈干, 吴吉春. 基于谐振子遗传算法的高效地下水优化管理模型[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1485-1492.
[15] 余楚, 张翼龙, 孟瑞芳, 曹文庚. 河套平原浅层地下水动态监测网优化设计[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1173-1179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!