吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 286-294.doi: 10.13278/j.cnki.jjuese.201601306

• 地球探测与信息技术 • 上一篇    下一篇

基于流动单元的砂砾岩储层渗透率测井精细评价

郑香伟, 吴健, 何胜林, 胡向阳, 梁玉楠   

  1. 中海石油(中国)有限公司湛江分公司, 广东湛江 524057
  • 收稿日期:2015-05-07 出版日期:2016-01-26 发布日期:2016-01-26
  • 作者简介:郑香伟(1989),男,工程师,主要从事地球物理测井的相关研究工作,E-mail:hanjt@jlu.edu.cn
  • 基金资助:

    国家科技重大专项(2011ZX05023-004)

Fine Evaluation of Permeability of Conglomerate Reservoir Based on Flow Unit

Zheng Xiangwei, Wu Jian, He Shenglin, Hu Xiangyang, Liang Yunan   

  1. Zhanjiang Branch of CNOOC Ltd, Zhanjiang 524057, Guangdong, China
  • Received:2015-05-07 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Supported by National Science and Technology Major Project (2011ZX05023-004)

摘要:

随着南海西部海域的勘探与开发,越来越多的砂砾岩油气藏被发现。但由于研究区域砂砾岩储层孔隙结构复杂,因此,孔隙度基本相同的储层之间渗透率差别很大,并且低渗砂砾岩储层的油水层测井响应特征不明显。针对于此,本文深入分析砂砾岩储层的孔隙结构特征及其对储集层电性的影响,总结不同沉积环境条件下渗透率的分布特征及影响因素。从宏观上看:受近物源的控制,快速堆积的碎屑杂基充填孔隙,储层渗透率表现为低渗特征;由于溶蚀作用改善了孔隙,远物源孔隙连通性较好,渗透率表现为中高渗特征;而压实作用较为强烈的储层则表现为特低渗特征。从微观上看,岩石平均孔喉半径是渗透率的重要内在控制因素。依据不同的沉积环境及孔隙结构特征,采用流动单元分析法,将砂砾岩储层细分为三大类,从而建立了三大类砂砾岩储层渗透率测井解释模型;并采用最能表征储层储集性能的补偿密度、补偿中子、泥质体积分数、地层流动带指数进行模糊聚类分析,得到Fisher线性判别模型。结果显示,流动单元法所建渗透率模型最终预测渗透率相对误差基本保持在50%以内,比传统孔渗模型方法精度更高,在研究区域更具有适用性和准确性。

关键词: 砂砾岩, 孔隙结构, 物源, 流动单元, 渗透率测井解释, 北部湾盆地

Abstract:

With the exploration and exploitation in western Southern Sea, there are an increasing number of conglomerate reservoirs being found. In the conglomerate reservoirs of the study area, the pore structure is complicated, permeability varies greatly among reservoirs of basically equal porosity, and the response in logging to oil-water layers is not obvious in hypotonic conglomerate reservoirs. Facing these issues, the authors analyze the pore structure characteristics and its influence on reservoir electricity, and generalize the permeability distribution and other factors in different sedimentary environments. Regionally, closed to its provenance, the quickly piled debris heteroaryl fills the pores, and this results in the low permeability of the reservoir; While far away from the provenance, the pores are improved by dissolution effect, yielding a good pore connectivity and permeability unless the reservoirs suffered strong compaction. Microscopically, pore-throat radius of rock determines permeability to some extent. According to different sedimentary environments and pore structure characteristics, by use of flow unit analysis, the conglomerate reservoirs are divided into three types. The reservoir performance factors, including compensated density, compensated neutron, mud content and lay flow index, are used for ambiguous clustering analysis to get the Fisher linear discrimination model so as to set up the logging interpretation model for three main kinds of conglomerate reservoirs. The permeability model built by the flow unit method is more accurate than that by conventional methods, and also more practical in the areas of interest.

Key words: sand conglomerate, pore structure, provenance, flow unit, permeability log interpretation, Beibuwan basin

中图分类号: 

  • P631.8

[1] 张龙海,周灿灿,刘国强,等.孔隙结构对低孔低渗储集层电性及测井解释评价的影响[J].石油勘探与开发,2006,33(6):3-6. Zhang Longhai, Zhou Cancan, Liu Guoqiang, et al. Influence of Pore Structures on Electric Properties and Well Logging Evaluation in Low Porosity and Permeability Reservoirs[J]. Petroleum Exploration and Development, 2006, 33(6):3-6.

[2] 王新民,郭彦如,付金华,等.鄂尔多斯盆地延长组长8段相对高孔渗砂岩储集层的控制因素分析[J].石油勘探与开发,2005,32(2):35-38. Wang Xinmin, Guo Yanru, Fu Jinhua, et al. Control Factors for Forming Higher Porosity and Permeability Sandstone Reservoirs in Chang 8 Member of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2005, 32(2):35-38.

[3] 钟大康,朱筱敏,张枝焕,等.东营凹陷古近系砂岩次生孔隙成因与纵向分布规律[J].石油勘探与开发,2003,30(6):51-53. Zhong Dakang, Zhu Xiaomin, Zhang Zhihuan, et al. Origin of Secondary Porosity of Paleogene Sandstone in the Dongying Sag[J]. Petroleum Exploration and Development, 2003, 30(6):51-53.

[4] 刘向君,夏宏泉,赵正文.砂泥岩地层渗透率预测通用计算模型[J].西南石油学院学报,1999,21(1):10-12. Liu Xiangjun, Xia Hongquan, Zhao Zhengwen. Establishing a General Model of Permeability for Sand-Shale Formations[J]. Journal of Southwest Petroleum University,1999, 21(1):10-12.

[5] Rahmawan I, Aditiah Y, Kurniawan A, et al. Estimating Permeability in Uncored Wells Usingmodified Flow ZoneIndex[C]//2009 SPE Asia Pacific Oil and Gas Conference and Exhaition. Jakarta:SPE, 2009.doi:10.2118/122490-MS.

[6] 樊洪海.测井资料检测地层孔隙压力传统方法讨论[J].石油勘探与开发,2003,30(4):72-74. Fan Honghai. Discussions on Thetraditional Pore Pressure Evaluation Methods by Using Well Logging[J]. Petroleum Exploration and Development, 2003, 30(4):72-74.

[7] 王多云,郑希民,李风杰,等.低孔渗油气富集区优质储层形成条件及相关问题[J].天然气地球科学,2003,14(2):87-91. Wang Duoyun,Zheng Ximin,Li Fengjie,et al.Forming Condition of High-Quality Reservoir and Its Relative Problems in Low Porosity and Permeability Enrichment Zone[J]. Natural Gas Geoscience, 2003, 14(2):89-90.

[8] 王洪建,吴小斌,孙卫,等.陇东地区延长组长3、长4+5储层物源及其对储层物性的影响[J]. 地球科学与环境学报,2008,30(1):42-43. Wang Hongjian, Wu Xiaobin, Sun Wei, et al. Provenance of Member 3 and Member 4+5 in Yanchang Formation of Longdong Area in Ordos Basin[J]. Journal of Earth Sciences and Environment, 2008, 30(1):42-43.

[9] 马奔奔,操应长,王艳忠,等.东营凹陷盐家地区沙四上亚段砂砾岩储层岩相与物性关系[J].吉林大学学报(地球科学版),2015,45(2):495-506. Ma Benben, Cao Yingchang, Wang Yanzhong, et al. Relationship Between Lithofacies and Physical Properties of Sandy Conglomerate Reservoirs of Es4s in Yanjia Area, Dongying Depression[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(2):495-506.

[10] 张龙海,刘国强,周灿灿,等.基于阵列感应测井资料的油气层产能预测[J].石油勘探与开发, 2005,32(3):84-87. Zhang Longhai, Liu Guoqiang, Zhou Cancan, et al. Reservoir Productivity Prediction by Array Induction Logging Data[J]. Petroleum Exploration and Deve-lopment, 2005, 32(3):84-87.

[11] 王月莲,袁士义,宋新民,等."无侵线法"流体识别技术在低渗低电阻率油藏中的应用[J].石油勘探与开发,2005,32(3):88-90. Wang Yuelian, Yuan Shiyi, Song Xinmin, et al. Non-Intrusion Line Method for Fluid Identification and Its Application in Low Permeability and Low Resistivity Reservoirs[J]. Petroleum Exploration and Development, 2005, 32(3):88-90.

[12] 李长喜,欧阳健,周灿灿,等.淡水钻井液侵入油层形成低电阻率环带的综合研究与应用分析[J].石油勘探与开发,2005,32(6):82-86. Li Changxi,Ouyang Jian,Zhou Cancan,et al.Forming Mechanism and Application of Low Resistivity Annulus in Oil Reservoirs Invaded by Fresh Drilling Mud[J]. Petroleum Exploration and Development, 2005, 32(6):82-86.

[13] 张国珍,杨华,赵志魁,等. 低孔低渗油气藏测井评价技术及应用[M].北京:石油工业出版社,2009:31-90. Zhang Guozhen, Yang Hua, Zhao Zhikui, et al. Low Porosity and Low Permeability Oil and Gas Reservoir Logging Evaluation Technology and Its Application[M]. Beijing:Petroleum Industry Press, 2009:31-90.

[14] 冯国庆,张烈辉,沈勇伟,等.应用模糊聚类分析方法评价油藏质量[J].西南石油学院学报,2004, 26(3):33-36. Feng Guoqing, Zhang Liehui, Shen Yongwei, et al. Reservoir Quality Evaluation by Fuzzy Clustering Analysis Method[J]. Journal of Southwest Petroleum University, 2004, 26(3):33-36.

[15] 郭桂芙,庄钊文.信息处理中的模糊技术[M].长沙:国防科技大学出版社,1996. Guo Jiafu, Zhuang Zhaowen. Fuzzy Technology in Information Processing[M]. Changsha:National University of Defense Technology Press,1996.

[16] Scionti M, Lanslots J P. Stabilization Diagrams:Pole Identification Using Fuzzy Clustering Techniques[J]. Advances in Engineering Software, 2005(36):768-779.

[17] 黄烈林,侯健,陈月明,等. Fisher判别法在聚合物驱潜力评价中的应用[J].石油大学学报(自然科学版),2002,26(1):49-51. Huang Lielin, Hou Jian, Chen Yueming, et al. Application of Fisher Discrimination Method to Potential Evaluation of Polymer Flooding[J]. Journal of the University of Petroleum, 2002, 26(1):49-51.

[1] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[2] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[3] 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692.
[4] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[5] 乔健, 栾金鹏, 许文良, 王志伟, 赵硕, 郭鹏. 佳木斯地块北部早古生代沉积建造的时代与物源:来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约[J]. 吉林大学学报(地球科学版), 2018, 48(1): 118-131.
[6] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
[7] 张恒荣, 何胜林, 吴进波, 吴一雄, 梁玉楠. 一种基于Kozeny-Carmen方程改进的渗透率预测新方法[J]. 吉林大学学报(地球科学版), 2017, 47(3): 899-906.
[8] 李福来, 肖飞, 孟凡超, 任泽樱. 内蒙古索伦地区上二叠统林西组碎屑岩地球化学特征及其对物源的指示意义[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1769-1780.
[9] 白永强, 刘美, 杨春梅, 姜振学. 基于AFM表征的页岩孔隙特征及其与解析气量关系[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1332-1341.
[10] 李易霖, 张云峰, 丛琳, 谢舟, 闫明, 田肖雄. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 379-387.
[11] 高福红, 王磊, 许文良, 王枫. 小兴安岭“晚古生代”地层的时代与物源:地质与碎屑锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2016, 46(2): 469-481.
[12] 张渝金, 吴新伟, 江斌, 郭威, 杨雅军, 刘世伟, 崔天日, 李伟, 李林川, 司秋亮, 张超. 大兴安岭扎兰屯地区格根敖包组碎屑锆石U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(2): 404-416.
[13] 马奔奔, 操应长, 王艳忠, 刘惠民, 高永进. 东营凹陷盐家地区沙四上亚段砂砾岩储层岩相与物性关系[J]. 吉林大学学报(地球科学版), 2015, 45(2): 495-506.
[14] 赵小青, 程日辉, 于振锋, 孙凤贤, 王鹏, 高会军. 海拉尔盆地乌尔逊凹陷南一段物源-沉积体系与构造背景[J]. 吉林大学学报(地球科学版), 2015, 45(1): 61-80.
[15] 刘栋, 李仲东, 陈威, 詹伟, 陈珊珊. 伊洛瓦底盆地D区块及周缘古近系物源分析[J]. 吉林大学学报(地球科学版), 2015, 45(1): 81-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!