吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (3): 805-813.doi: 10.13278/j.cnki.jjuese.201603202

• 地质工程与环境工程 • 上一篇    下一篇

静压管桩桩-土作用机制及其竖向承载力确定方法

王常明, 常高奇, 吴谦, 李文涛   

  1. 吉林大学建设工程学院, 长春 130026
  • 收稿日期:2015-10-24 出版日期:2016-05-26 发布日期:2016-05-26
  • 作者简介:王常明(1966),男,教授,博士生导师,主要从事岩土力学的教学与研究,E-mail:wangcm@jlu.edu.cn
  • 基金资助:

    国家自然科学基金面上项目(40972171)

Pile-Soil Interaction Mechanism and a Method to Determine Vertical Bearing Capacity of Prestressed Concrete Pipe Pile

Wang Changming, Chang Gaoqi, Wu Qian, Li Wentao   

  1. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2015-10-24 Online:2016-05-26 Published:2016-05-26
  • Supported by:

    Supported by National Natural Science Foundation of China Projects (40972171)

摘要:

为深入研究静压管桩桩土的作用机制及其竖向承载力的确定方法,以长春地区建筑工程使用的静压管桩为例,采用数值模拟方法和桩的载荷试验,分析了桩对桩周土的挤压作用以及桩端阻力变化规律。结果表明:桩被压入土体过程中,主要受到桩侧摩阻力和桩端阻力的作用,并造成桩周及桩端附近土体受到挤压而变形;随着桩入土深度的增加,桩顶荷载逐渐增大,而且桩径越大,相应深度的桩顶荷载就越大;同时,随着桩入土深度的增加,桩端阻力在单桩竖向承载力中的比例有规律地下降。根据桩端阻力在单桩承载力中所占比例与入土深度的关系,提出了静压管桩单桩承载力特征值的计算方法;对比建议公式和经验公式计算结果,其比值为0.57~1.26,两者结果接近。因此,文中所提出的单桩承载力特征值的确定方法是可行的。

关键词: 静压管桩, 数值模拟, 单桩承载力特征值

Abstract:

In order to research further on the pile-soil interaction mechanism and the methods to determine the vertical bearing capacity of prestressed concrete pipe pile, taken three projects of the prestressed concrete pipe pile in Changchun area as examples, the squeezing effect of pile to soil and the resistance of pile tip resistance are simulated numerically and tested by loading tests. It is shown that the side friction and the tip resistance are together produced to support the top load of pile in process of pile pressed into subsoil, and thus cause compressional deformation in the subsoil around the pile and near the end of pile. With increasing in depth, the top load of pile will increase gradually, and the bigger diameter of pile is the larger top load is. The proportion of tip resistance to pile bearing capacity tends to decline in regular with increasing depth of pile. According to the relationship between the proportion of pile tip resistance to single pile bearing capacity and the depth of pile, a new method to determine the bearing capacity of single pile is suggested in this paper. The method is feasible and applicable in Changchun area as the ratio of its calculation values to the results from empirical formula is between 0.57 and 1.26.

Key words: pressured pile concrete pipe, numerical simulation, characteristic value of single pile bearing capacity

中图分类号: 

  • P642.22

[1] 王启铜,龚晓南,曾国熙. 考虑土体拉、压模量不同时静压桩的沉桩过程[J]. 浙江大学学报(自然科学版),1992,26(6):678-687. Wang Qitong, Gong Xiaonan, Zeng Guoxi. Pile Jacking in a Soil Mass with Different Elstic Moduli in Tension and Compressinon[J]. Journal of Zhejiang University (Natural Sciences),1992,26(6):678-687.

[2] 施建勇,陈文,彭劼. 沉桩挤土效应分析[J]. 河海大学学报(自然科学版),2003,31(4):415-418. Shi Jianyong, Chen Wen, Peng Jie. Pile-Sinking Induced Soil Squeezing Effect[J]. Journal of Hohai University (Natural Sciences),2003,31(4):415-418.

[3] 张宇.长春地区静压桩承载性状及应用研究[D].长春:吉林大学,2009. Zhang Yu. Study on Bearing Behavior of Jacked Pile and Its Application in Changchun[D]. Changchun:Jilin University.2009.

[4] Orrje O,Broms B. Effects of Pile Driving on Soil Pro-perties[J]. Journal of Soil Mechanics & Foundations Division ASCE,1967,93(SM5):59-73.

[5] Hagerty D J, Peck P B. Heave and Lateral Movements due to Pile Driving[J]. Journal of Soil Mechanics & Foundations Division, ASCE, 1971,97(SM11):1513-1532.

[6] 田雪飞,卢海筠,闫景侠,等. 后压浆灌注桩基承载力计算方法比较研究[J]. 岩土工程学报,2013,35(增刊1):372-377. Tian Xuefei, Lu Haiyun,Yan Jingxia, et al. Comparative Study on Methods for Bearing Capacity of Foundation with Post-Grouting Drilling Piles[J]. Chinese Journal of Geotechnical Engineering, 2013,35(Sup.1):372-377.

[7] 李雨浓,李镜培,赵仲芳,等. 层状地基静压桩贯入过程机理试验[J]. 吉林大学学报(地球科学版),2010,40(6):1409-1414. Li Yunong, Li Jingpei, Zhao Zhongfang, et al. Model Test Research on Penetration Process of Jacked Pile in Layered Soil[J]. Journal of Jilin University (Earth Science Edition), 2010,40(6):1409-1414.

[8] 张明义.静力入桩的研究与应用[M].北京:中国建筑工业出版社,2004. Zhang Mingyi, Researching and Application of the Static Pile[M]. Beijing:China Building Industry Press, 2004.

[9] 冯国军. 摩擦桩竖向承载力计算方法研究[J]. 铁道工程学报,2007,24(2):65-68,99. Feng Guojun. Research of Upright Bearing Capacity of Friction Pile[J]. Journal of Railway Engineering, 2007,24(2):65-68,99.

[10] 姜晨光,Bai Xiaolin,巩亮生,等. 摩擦桩单桩竖向承载力计算方法[J]. 辽宁工程技术大学学报(自然科学版),2008,27(增刊1):71-73. Jiang Chenguang, Bai Xiaolin,Gong Liangsheng, et al. Calculation of Vertical Method Load-Bearing Capacity of Single Pilein Frictionpile[J]. Journal of Liaoning Technical University (Natural Sciences), 2008, 27(Sup.1):71-73.

[11] JGJ94-2008建筑桩基技术规范[S]. 北京:中国建筑工业出版社,2008. JGJ94-2008 Technical Specification for Constructionof Pile Foundation[S].Beijing:China Building Industry Press, 2008.

[12] GB50007-2011建筑地基基础设计规范[S].北京:中国建筑工业出版社,2011. GB50007-2011 Code for Design of Building Foundation[S]. Beijing:China Building Industry Press, 2011.

[13] DBJ-15-31-2003建筑地基基础设计规范[S].北京:中国建筑工业出版社,2003. GB50007-2011 Code for Design of Building Foundation[S]. Beijing:China Building Industry Press, 2003.

[14] 高盟,王滢,高广运,等.一种大直径扩底桩端阻力和侧阻力的确定方法[J].岩土力学,2013,34(3):797-801. Gao Meng, Wang Ying, Gao Guangyun, et al. A Method for Determining Tip and Side Resistances of Large Diameter Pedestal Pile[J]. Rock and Soil Mechanics, 2013,34(3):797-801.

[15] DB22T432-2006静压预应力混凝土管桩基础技术规程[S]北京:中国建筑工业出版社,2006. DB22T432-2006 Technical Specificition for Stric Pressing-in Prestressed Concrete Pipe Pile Foundation[S]. Beijing:China Building Industry Press, 2006.

[16] 张明义, 邓安福,干腾君.静力压桩数值模拟的位移贯入法[J].岩土力学,2003,(1):113-117. Zhang Mingyi, Deng Anfu, Gan Tengjun. Displacement Penetration Method Used for Numerical Simnulation to Jacked Pile[J]. Rock and Soil Mechanics 2003,24(1):113-117.

[17] 陈育民,徐鼎平. FLAC FLAC3D基础与工程实例[M].二版.北京:中国水利水电出版社,2009. Chen Yumin, Xu Dingping. The FLAC V FLAC3D Foundation and Engineering Examples[M]. 2nd ed. Beijing China Water Power Press,2009.

[18] JGJ 106-2003建筑基桩检测技术规范[S].北京:中国建筑工业出版社,2003. JGJ 106-2003 Technical Code for Testing of Building Foundation Piles[S]. Beijing:China Building Industry Press, 2003.

[1] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[2] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[3] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[4] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[5] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[6] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[7] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[8] 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219.
[9] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[10] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
[11] 张剑波, 李谢清, 石阳, 朱建勃. 油藏数值模拟中地质模型的建模流程与方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 860-868.
[12] 束龙仓, 范建辉, 鲁程鹏, 张春艳, 唐然. 裂隙-管道介质泉流域水文地质模拟试验[J]. 吉林大学学报(地球科学版), 2015, 45(3): 908-917.
[13] 杨丽春, 庞宇斌, 李慎刚. 超长基坑开挖的空间效应[J]. 吉林大学学报(地球科学版), 2015, 45(2): 541-545.
[14] 雷宏武, 李佳琦, 许天福, 王福刚. 鄂尔多斯盆地深部咸水层二氧化碳地质储存热-水动力-力学(THM)耦合过程数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(2): 552-563.
[15] 杜超, 肖长来, 吕军, 田浩然. 地下水水质实时预报系统开发及应用:以下辽河平原为例[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1625-1632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!