吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 755-761.doi: 10.13278/j.cnki.jjuese.20180192

• 地质工程与环境工程 • 上一篇    下一篇

超声波振动下不同应力条件对岩石强度影响的试验

尹崧宇1, 赵大军2   

  1. 1. 中交天津航道局有限公司天津市疏浚工程技术企业重点实验室, 天津 300450;
    2. 吉林大学建设工程学院, 长春 130026
  • 收稿日期:2018-07-18 出版日期:2019-06-03 发布日期:2019-06-03
  • 通讯作者: 赵大军(1964-),男,教授,博士生导师,主要从事地下钻采技术方面的研究,E-mail:1729333689@qq.com E-mail:1729333689@qq.com
  • 作者简介:尹崧宇(1989-),男,博士,主要从事地下钻采技术方面的研究,E-mail:15421072@qq.com
  • 基金资助:
    国家自然科学基金项目(41572356)

Experiment on Effect of Different Stress Conditions on Rock Strength Under Ultrasonic Vibration

Yin Songyu1, Zhao Dajun2   

  1. 1. Tianjin Key Laboratory for Dredging Engineering Enterprises, CCCC Tianjin Dredging Co. Ltd., Tianjin 300450, China;
    2. Construction Engineering College, Jilin University, Changchun 130026, China
  • Received:2018-07-18 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China(41572356)

摘要: 振动有助于碎岩,以往关于振动碎岩机理的研究大多在低频率段展开。为填补超高频率段下振动碎岩机理的空白,采用单轴动静组合加载模式,开展了超声波振动下不同应力条件对岩石强度影响的试验研究,其中超声波振动频率为20 kHz,预压范围为100~500 N。研究结果表明:当预压小于200 N时,岩石内部应力状态无法满足强度准则,岩石强度下降不明显;当预压大于等于200 N时,岩石强度随振动时间的增加而逐渐降低且存在最优预压力值(400 N)使得岩石强度最低。缩短振动频率与岩石固有频率的差值有利于提高超声波振动碎岩效率。

关键词: 超声波振动, 预压力, 数值模拟, 抗压强度

Abstract: Vibration contributes to crushing of rocks. Research on the mechanism of vibrating rock is usually carried out in the low frequency range. In order to fill in the gap of the mechanism of rock crushing by vibration of ultra-high frequency section, an experimental study on the effect of ultrasonic vibration on rock strength under different stress conditions was conducted based on static and dynamic loading models, under the condition that the ultrasonic vibration frequency was 20 kHz, and the preloading range was 100-500 N. It is demonstrated that the rock strength remained unchanged basically when the preloading was less than 200 N. The reason is that the internal stress state of rock did not meet the strength criterion. When the preloading was more than 200 N, the rock strength increased with vibration duration, and there is an optimal preloading value (400 N) to minimize the rock strength. The efficiency of ultrasonic vibration rock crushing can be improved by narrowing the difference between the vibration frequency and the natural frequency of the rock.

Key words: ultrasonic vibration, preloading, numerical simulation, compressive strength

中图分类号: 

  • P634.1
[1] Atalah A. Effect of Rock Trenching Vibrations on Nearby Structures[J]. Journal of Construction Engineering and Management,2008, 134:234-241.
[2] Xu G Y, Yan C B. Numerical Simulation for Influence of Excavation and Blasting Vibration on Stability of Mined-out Area[J]. Journal of Central South University of Technology, 2006,13:577-583.
[3] Roussy R. The Development of Sonic Drilling Technology[J].Geo-Drilling International,2002,10:12-14
[4] Oothoudt T. Sonic Drilling:An Environmental Imperative[J]. Geo-Drilling International,1998,2:14-16
[5] Davison L, Stevens A L. Continuum Measures of Spall Damage[J].Journal of Applied Physics, 1972,43:988-994.
[6] Whittles D N, Kingman S, Lowndes I, et al. Laboratory and Numerical Investigation into the Characteristics of Rock Fragmentation[J]. Minerals Engineering,2006,19:1418-1429.
[7] Li X B, Zhou Z L, Lok Tat-Seng,et al. Innovative Testing Technique of Rock Subjected to Coupled Static and Dynamic Loads[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):739-748.
[8] 李夕兵, 周子龙,叶州元,等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报,2008,27(7):1387-1395. Li Xibing, Zhou Zilong, Ye Zhouyuan, et al. Study of Rock Mechanical Characteristics Under Coupled Static and Dynamic Loads[J]. Journal of Rock Mechanics and Engineering, 2008,27(7):1387-1395.
[9] 李夕兵, 宫凤强, 高科,等. 一维动静组合加载下岩石冲击破坏试验研究[J]. 岩石力学与工程学报,2010,29(2):251-260. Li Xibing, Gong Fengqiang, Gao Ke,et al.Test Study of Impact Failure of Rock Subjected to One Dimensional Coupled Static and Dynamic Loads[J]. Journal of Rock Mechanics and Engineering, 2010,29(2):251-260.
[10] 尹土兵, 李夕兵, 叶洲元,等. 温-压耦合及动力扰动下岩石破碎的能量耗散[J].岩石力学与工程报, 2013,32(6):1197-1202. Yin Tubing, Li Xibing, Ye Zhouyuan,et al. Energy Dissipation of Rock Fracture Under Thermo-Mechanical Coupling and Dynamic Disturbances[J]. Journal of Rock Mechanics and Engineering, 2013,32(6):1197-1202.
[11] Nikolic M, Ibrahimbegovic A. Rock Mechanics Model Capable of Representing Initial Heterogeneities and Full Set of 3D Failure Mechanisms[J].Computer Methods in Applied Mechanics and Engineering, 2015,290:209-227.
[12] Zhong J H, Liu S X, Ma Y S,et al. Macro-Fracture Mode and Micro-Fracture Mechanism of Shale[J]. Petroleum Exploration and Development, 2015, 42:269-276.
[13] Rabczuk T, Bordas S, Zi G. On Three-Dimensional Modelling of Crack Growth Using Partition of Unity Methods[J]. Computers & Structures,2010, 88(23):1391-1411
[14] Bazant Z P, Caner F C, Carol Ignacio, et al. Microplane Model M4 for Concrete:I:Formulation with Work-Conjugate Deviatoric Stress[J]. Journal of Engineering Mechanics,2000,126(9):944-953.
[15] 张德海,朱浮声, 邢纪,等,岩石类非均质脆性材料破坏过程的数值模拟[J]. 岩石力学与工程学报,2005,24(4):570-574. Zhang Dehai, Zhu Fusheng, Xing Ji,et al. Numerical Simulation of Fracture Propagation of Anisotropic Rock-Like Materials[J]. Journal of Rock Mechanics and Engineering, 2005,24(4):570-574.
[16] Volkov C Д.The Intensity Statistical Theory[M].Beijing:Science Press,1965
[17] 尹崧宇,赵大军,周宇,等,超声波振动下非均匀岩石损伤过程数值模拟与试验[J].吉林大学学报(地球科学版),2017,47(2):526-533. Yin Songyu, Zhao Dajun, Zhou Yu, et al. Numerical Smulation and Experiment of the Damage Process of Heterogeneous Rock Under Ultrasonic Vibration[J]. Journal of Jilin University(Earth Science Edition), 2017,47(2):526-533.
[18] Chang C S, Wang T K, Sluys L J, et al. Fracture Modeling Using a Micro-Structural Mechanics Approach:I:Theory and Formulation[J]. Engineering Fracture Mechanics,2002,69:1941-1958.
[1] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[2] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[3] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[4] 苟富刚, 龚绪龙, 王光亚. 连云港海相软土不排水强度特征[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1165-1173.
[5] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[6] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[7] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[8] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[9] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[10] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[11] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[12] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[13] 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219.
[14] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[15] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!