吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1457-1465.doi: 10.13278/j.cnki.jjuese.20180226

• 地球探测与信息技术 • 上一篇    下一篇

高黏粒含量海洋土电阻率特征分析及模型构建

朱广祥1, 郭秀军1,2, 余乐1, 孙翔1, 贾永刚1,2   

  1. 1. 中国海洋大学环境科学与工程学院, 山东 青岛 266100;
    2. 山东省海洋环境地质工程重点实验室, 山东 青岛 266100
  • 收稿日期:2018-08-27 发布日期:2019-10-10
  • 通讯作者: 郭秀军(1972-),男,教授,主要从事海洋地质环境监测技术研究及装备开发,E-mail:guojunqd@ouc.edu.cn E-mail:guojunqd@ouc.edu.cn
  • 作者简介:朱广祥(1992-),男,助理研究员,主要从事海洋环境岩土方面的研究工作,E-mail:2497374078@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFC0307701);国家自然科学基金项目(41772307,41427803)

Analysis on Resistivity Characteristics and Resistivity Model Building of Marine Soil with High Clay Content

Zhu Guangxiang1, Guo Xiujun1,2, Yu Le1, Sun Xiang1, Jia Yonggang1,2   

  1. 1. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, Shandong, China
  • Received:2018-08-27 Published:2019-10-10
  • Supported by:
    Supported by National Key R & D Program of China (2017YFC0307701) and National Natural Science Foundation of China (41772307, 41427803)

摘要: 在高黏粒含量海洋土中,黏粒吸附孔液中阳离子形成的双电层会直接影响土体导电性,与孔液、土体结构共同形成土体导电性的影响因素,使导电结构变得复杂。对饱和的海洋土而言,固结程度不同代表了土体结构不同。为量化分析双电层对不同固结程度高黏粒含量海洋土导电性的影响,界定电阻率测试技术对海洋土结构变化的反映能力,分别以黄河三角洲和南海北部陆坡海洋土为研究对象,进行电阻率和其他物理性质测试。基于测试结果分析不同黏粒含量海洋土电阻率的变化规律和独有特征,借鉴黏性土多元导电理论构建适合的电阻率模型。研究表明,黏粒含量对不同固结程度海洋土电阻率的影响不同,根据其变化特征可分为3个阶段:正常固结的海洋土电阻率变化可用简化的二元模型公式表示,当孔隙度小于50%时,电阻率随孔隙度呈明显的幂函数降低,当孔隙度介于50%~60%时,电阻率随孔隙度降低速率明显减小;欠固结海洋土孔隙度均高于60%,电阻率随孔隙度线性减小,可用线性模型公式描述。电阻率测量技术对高黏粒含量正常固结海洋土结构变化(孔隙度变化)反映能力良好,探测灵敏度可达25 Ω·m;对欠固结海洋土结构变化反映困难。

关键词: 海洋黏土, 电阻率特征, 电阻率模型, 影响因素

Abstract: The clay adsorption cations in pore fluid can form a double electric layer, which affects the soil conductivity, and together with pore fluid and soil structure make the conductive structure complicated. To address this issue, the resistivity values and other physical properties of soil from the Yellow River Delta and the northern South China Sea slope were tested. The results show that the effects of clay content on the resistivity of marine soil with different consolidation degrees are different. The resistivity characteristics of marine soil can be divided into 3 stages. The variation of resistivity of normally consolidated marine soil can be expressed by simplified binary model formula. When the porosity was less than 50%, the resistivity was power function reduction, when the porosity was between 50% and 60%, the resistivity decreased slowly with the decrease of porosity, when the porosity of unconsolidated marine soil was higher than 60%, the resistivity decreased linearly with the porosity,which can be described by the linear model formula. The resistivity testing technology has a good ability to reflect the changes of the normally consolidated soil structures (porosity) with high clay content, and the detection sensitivity is up to 25 Ω·m; however, it is difficult to reflect the changes of the unconsolidated marine soil.

Key words: marine clay, resistivity characteristics, resistivity model, influencing factors

中图分类号: 

  • P631.3
[1] 郭秀军, 刘涛, 贾永刚, 等. 土的工程力学性质与其电阻率关系实验研究[J]. 地球物理学进展, 2003, 18(1):151-155. Guo Xiujun, Liu Tao, Jia Yonggang, et al. The Study of the Relationship Between Engineering Mechanical Properties and Resistivity of Soils[J]. Progress in Geophysics, 2003, 18(1):151-155.
[2] 郭秀军, 张志阔, 贾永刚, 等. 黄河口饱和粉土的电性特征及其工程地质应用[J]. 岩土力学, 2007, 28(3):593-598. Guo Xiujun, Zhang Zhikuo, Jia Yonggang, et al. Electrical Resistivity Feature of Saturated Silty Soil in Yellow River Estuarine Area and Its Engineering Geology Application[J]. Rock and Soil Mechanics, 2007, 28(3):593-598.
[3] 刘晓磊, 单红仙, 贾永刚,等. 电阻率法监测黄河口海床沉积物固结过程现场试验研究[J]. 海洋与湖沼, 2012, 43(2):224-229. Liu Xiaolei, Shan Hongxian, Jia Yonggang, et al. In-situ Monitoring of Seabed Sediments Consolidation Progress in Yellow River Estuary by Electrical Resistivity Method[J]. Oceanologia et Limnologia Sinica, 2012, 43(2):224-229.
[4] Fukue M, Minato T, Horibe H, et al. The Microstructure of Clay Given by Resistivity Measurements[J]. Engineering Geology, 1999, 54(1/2):43-53.
[5] Jinguuji M, Toprak S, Kunimatsu S. Visualization Technique for Liquefaction Process in Chamber Experiments by Using Electrical Resistivity Monitoring[J]. Soil Dynamics & Earthquake Engineering, 2007, 27(3):191-199.
[6] Fukue M, Minato T, Matsumoto M, et al. Use of a Resistivity Cone for Detecting Contaminated Soil Layers[J]. Engineering Geology, 2001, 60(1):361-369.
[7] 孙永福, 孙惠凤, 董立峰. 海底土的电阻率特征及其腐蚀性评价[J]. 海岸工程, 2005, 24(2):48-53. Sun Yongfu, Sun Huifeng. Dong Lifeng. Seabed Sediment Resistivity Characteristics and Its Corrosivity Assessment[J]. Coastal Engineering, 2005, 24(2):48-53.
[8] 蔡国军, 张涛, 刘松玉,等. 江苏海相黏土电阻率与岩土特性参数间相关性研究[J]. 岩土工程学报, 2013, 35(8):1470-1477. Cai Guojun, Zhang Tao, Liu Songyu, et al. Analysis of Formation Characteristics of Marine Clay Based on Resistivity Cone Penetration Test (RCPT)[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8):1470-1477.
[9] 李瑛, 龚晓南, 郭彪, 等. 电渗软黏土电导率特性及其导电机制研究[J]. 岩石力学与工程学报, 2010, 29(增刊2):4027-4032. Li Ying,Gong Xiaonan,Guo Biao,et al. Research on Conductivity Characteristics of Soft Clay During Electroosmosis and Its Conductivity Mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup. 2):4027-4032.
[10] 陈琼. 黏土吸附结合水动力学模型及机理研究[D]. 武汉:中国地质大学, 2013. Chen Qiong. A Dissertation Submitted to China University of Geosciences for the Doctor Degree of Philosophy[D]. Wuhan:China University of Geosciences, 2013.
[11] Waxman M H, Smits L J M. Electrical Conductivities in Oil-Bearing Shaly Sands[J]. Society of Petroleum Engineers Journal, 2003, 8(8):107-122.
[12] Mitchell J K. Fundamentals of Soil Behavior[M]. New York:Wiley & Sons, 1993.
[13] 宋延杰, 唐晓敏, 张传英. 三种混合泥质砂岩有效介质通用电阻率模型比较[J]. 吉林大学学报(地球科学版), 2008, 38(5):879-886. Song Yanjie, Tang Xiaomin, Zhang Chuanying. Comparison of Three Generalized Effective Medium Resistivity Models in Laminated and Dispersed Shaly Sands[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(5):879-886.
[14] 宋延杰, 李晓娇, 唐晓敏, 等. 基于连通导电理论和H方程的骨架导电纯岩石电阻率模型[J]. 中国石油大学学报(自然科学版), 2014, 38(5):66-74. Song Yanjie, Li Xiaojiao, Tang Xiaomin, et al. Matrix-Conducting Resistivity Model for Clean Sands Based on Connectivity Conductance Theory and HB Equation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(5):66-74.
[15] 冯秀丽, 林霖, 庄振业, 等. 现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间的关系[J]. 海岸工程, 1999, 18(4):1-7. Feng Xiuli, Lin Lin, Zhuang Zhenye, et al. The Relationship Between Geotechnical Parameters and Sedimentary Environment of Soil Layers Since Holocene in Modern Huanghe Subaqueous Delta[J]. Coastal Engineering, 1999, 18(4):1-7.
[16] 李亮, 陈忠, 刘建国,等. 南海北部表层沉积物类型及沉积环境区划[J]. 热带海洋学报, 2014, 33(1):54-61. Li Liang, Chen Zhong, Liu Jianguo, et al. Distribution of Surface Sediment Types and Sedimentary Environment Divisions in the Northern South China Sea[J]. Jounrnal of Trppical Oceanography, 2014, 33(1):54-61.
[17] 朱超祁, 贾永刚, 张民生,等. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 2016, 24(5):863-870. Zhu Chaoqi, Jia Yonggang, Zhang Minsheng, et al. Surface Sediment Strength in Bed-Slope of Northern South China Sea[J]. Journal of Engineering Geology, 2016, 24(5):863-870.
[18] 栾锡武, 孙钿奇, 彭学超. 南海北部陆架南北卫浅滩的成因及油气地质意义[J]. 地质学报, 2012, 86(4):626-640. Luan Xiwu, Sun Dianqi, Peng Xuechao. Genesis of the Nanbeiwei Shoal on the Shelf of the Northern South China Sea and Its Petroliferous Significance[J]. Acta Geologica Sinica, 2012, 86(4):626-640.
[19] 刘文忠, 施行觉, 徐果明. 饱油、饱水岩石电阻率的测试和研究[J]. 地球物理学报, 1995,38(A01):316. Liu Wenzhong, Shi Xingjue, Xu Guoming. Study and Measurement on Resistivity of Oil or Water Saturated[J]. Chinese Journal of Geophysics, 1995,38(A01):316.
[20] 查甫生, 刘松玉, 杜延军. 非饱和黏性土电阻率结构模型研究[J]. 工程勘察, 2006(7):1-4. Zha Fusheng, Liu Songyu, Du Yanjun. Study on Resistivity Structure Model of Unsaturated Cohesive Soil[J]. Geotechnical Investigation & Surveying, 2006(7):1-4.
[21] Bruggeman D A G. Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen:Ⅲ:Die Elastischen Konstanten der Quasiisotropen Mischkörper aus Isotropen Substanzen[J]. Annalen Der Physik, 2010, 417(7):645-672.
[1] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[2] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798.
[3] 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251.
[4] 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192.
[5] 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893.
[6] 董德明, 曹珍, 闫征楚, 花修艺, 朱磊, 徐阳, 郭志勇, 梁大鹏. 臭氧-超声联用处理聚乙烯醇废水[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1191-1198.
[7] 李庆洋, 李振春, 黄建平, 李娜, 苏在荣. 基于贴体全交错网格的起伏地表正演模拟影响因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 920-929.
[8] 熊德明, 张明峰, 吴陈君, 妥进才. 基于模糊层次分析方法的泥质有效低熟气源岩评价[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1620-1630.
[9] 战高峰, 朱福, 董伟智, 王静. 季冻区低路堤土基强度与影响因素相关性[J]. 吉林大学学报(地球科学版), 2015, 45(3): 869-875.
[10] 曹阳,滕彦国,刘昀竺. 宁夏吴忠市金积水源地地下水水质影响因素的多元统计分析[J]. 吉林大学学报(地球科学版), 2013, 43(1): 235-244.
[11] 陈勇,何中发,黎兵, 赵宝成. 崇明东滩潮沟发育特征及其影响因素定量分析[J]. 吉林大学学报(地球科学版), 2013, 43(1): 212-219.
[12] 梁秀娟, 方樟, 季超, 王雪芹, 李钦伟. 高氟湖库底泥中氟的存在形态分析--以洋沙泡水库为例[J]. J4, 2010, 40(3): 651-656.
[13] 薛军民, 解伟, 王震, 张林. 川口油田长6储层成岩作用[J]. J4, 2009, 39(6): 1007-1012.
[14] 朱建伟,蒋黎,郭殿军,云海富,陈杏霞. 松辽盆地北部常家围子地区姚一段储层特征及影响因素分析[J]. J4, 2009, 39(2): 205-0210.
[15] 宋延杰,唐晓敏,张传英. 种混合泥质砂岩有效介质通用电阻率模型比较[J]. J4, 2008, 38(5): 879-0886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!