吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1197-1210.doi: 10.13278/j.cnki.jjuese.20190123
• 地球探测与信息技术 • 上一篇
郑玉君1,2, 侯振隆1,2, 巩恩普1,2, 张永利1,2
Zheng Yujun1,2, Hou Zhenlong1,2, Gong Enpu1,2, Zhang Yongli1,2
摘要: 针对重力勘探中相关成像存在纵向分辨率较低的问题,提出基于深度加权的多分量重力梯度数据联合相关成像方法。与重力异常数据相比,重力梯度数据具有更高的信噪比、包含更多的频率信息。因此,本文在相关成像原理基础上联合多分量重力梯度数据,引入基于先验信息的深度加权函数,通过对研究区域进行划分,进一步提高深度加权效果。利用长方体组合理论模型确定了最佳梯度数据组合,验证了深度加权函数能够提高纵向成像效果;提出的方法还被证明具有抗噪性。将该方法应用于文顿盐丘区域的实测重力梯度数据,结果能够清晰地显示盖岩的位置。
中图分类号:
[1] Hou Zhenlong, Wei Xiaohui, Huang Danian. Fast Density Inversion Solution for Full Tensor Gravity Gradiometry Data[J]. Pure and Applied Geophysics, 2016, 173(2):509-523. [2] Oruc B, Sertcelik I, Kafadar O, et al. Structural Interpretation of the Erzurum Basin, Eastern Turkey, Using Curvature Gravity, Gradient Tensor and Gravity Inversion of Basement Relief[J]. Journal of Applied Geophysics, 2013, 88(4):105-113. [3] 袁园,黄大年,余青露.利用加强水平方向总水平导数对位场全张量数据进行边界识别[J].地球物理学报,2015,58(7):2556-2565. Yuan Yuan, Huang Danian, Yu Qinglu. Using Enhanced Directional Total Horizontal Derivatives to Detect the Edges of Potential-Field Full Tensor Data[J]. Chinese Journal of Geophysics, 2015, 58(7):2556-2565. [4] 高秀鹤,黄大年,孙思源,等.重力梯度数据协克里金三维反演确定岩脉倾向[J].吉林大学学报(地球科学版),2017,47(2):589-596. Gao Xiuhe, Huang Danian, Sun Siyuan,et al. Identify the Dip Angle of the Dipping Dike Model Based on Cokriging Inversion of Gravity Gradient Data[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):589-596. [5] Patella D. Introduction to Ground Surface Self-Potential Tomography[J]. Geophysical Prospecting, 1997, 45(4):653-681. [6] Mauriello P, Monna D, Patella D. 3D Geoelectric Tomography and Archaeological Applications[J]. Geophysical Prospecting, 1998, 46(5):543-570. [7] Mauriello P, Patella D. Resistivity Anomaly Imaging by Probability Tomography[J]. Geophysical Prospecting, 1999, 47(3):411-429. [8] Mauriello P, Patella D. Localization of Maximum Depth Gravity Anomaly Sources by a Distribution of Equivalent Point Masses[J]. Geophysics, 2001, 66(5):1431-1437. [9] Iuliano T, Mauriello P, Patella D. Looking Inside Mount Vesuvius by Potential Fields Integrated Probability Tomographies[J]. Journal of Volcanology and Geothermal Research, 2002, 113(3):363-378. [10] 王绪本,毛立峰,高永才.电磁导数场相关成像方法研究[J]. 成都理工大学学报(自然科学版),2004,31(6):679-684. Wang Xuben, Mao Lifeng, Gao Yongcai. Probability Tomography of Electromagnetic Field-Derivative Method[J]. Journal of Chengdu University of Technology, 2004, 31(6):679-684. [11] 毛立峰,王绪本,高永才.大地电磁概率成像的效果评价[J]. 地球物理学报,2005,48(2):429-433. Mao Lifeng, Wang Xuben, Gao Yongcai. Appraisement on the MT Probability Temography[J]. Chinese Journal of Geopysics, 2005, 48(2):429-433. [12] 郭良辉,孟小红,石磊.磁异常ΔT 三维相关成像[J]. 地球物学报,2010,53(2):435-441. Guo Lianghui, Meng Xiaohong, Shi Lei. 3D Correlation Imaging for Magnetic Anomaly ΔT Data[J]. Chinese Journal of Geophysics, 2010, 53(2):435-441. [13] 郭良辉,孟小红,石磊,等.重力和重力梯度数据三维相关成像[J].地球物学报,2009,52(4):1098-1106. Guo Lianghui, Meng Xiaohong, Shi Lei, et al. 3-D Correlation Imaging for Gravity Gradiometry Data[J]. Chinese Journal of Geophysics, 2009, 52(4):1098-1106. [14] 马国庆,杜晓娟,李丽丽.改进的位场相关成像方法[J]. 地球科学:中国地质大学学报,2013,38(5):1121-1127. Ma Guoqing, Du Xiaojuan, Li Lili. Improved Potential Field Correlation Imaging Method[J]. Earth Science:Journal of China University of Geosciences,2013,38(5):1121-1127. [15] 石磊,郭良辉,孟小红. 磁总场异常垂直梯度三维相关成像[J]. 地球物理学进展,2012,27(4):1609- 1614. Shi Lei, Guo Lianghui, Meng Xiaohong. 3D Correlation Imaging of the Vertical Gradient of Magnetic Total Field Anomaly[J]. Progress in Geophys, 2012, 27(4):1609-1614. [16] 侯振隆,王恩德.基于泰勒级数的重力异常数据快速相关成像[J]. 东北大学学报(自然科学版),2019,40(4):563-568. Hou Zhenlong, Wang Ende. Fast Probability Tomography of Gravity Anomaly Data Based on Taylor Series[J]. Journal of Northeastern University (Natural Science Edition), 2019, 40(4):563-568. [17] Li Yaoguo, Oldenburg W D. 3-D Inversion of Magnetic Data[J]. Geophysics, 1996, 61(2):394-408. [18] Federico Cella, Maurizio Fedi. Inversion of Potential Field Data Using the Structural Index as Weighting Function Rate Decay[J]. Geophysical Prospecting, 2012, 60(2):313-336. [19] Commer M. Three-Dimensional Gravity Modeling and Focusing Inversion Using Rectangular Meshes[J]. Geophysical Prospecting, 2011, 59(5):966-979. [20] Commer M, Newman G A, Williams K H, et al. 3D Induced-Polarization Data Inversion for Complex Resistivity[J]. Geophysics, 2011, 76(3):157-171. [21] Chen Z, Meng X, Guo L, et al. GICUDA:A Parallel Program for 3D Correlation Imaging of Large Scale Gravity and Gravity Gradiometry Data on Graphics Processing Units with CUDA[J]. Computers & Geosciences, 2012, 46(5):119-128. [22] Li Y, Oldenburg D W. 3-D Inversion of Gravity Data[J]. Geophysics, 1998, 63:109-119. [23] Li Y. 3-D Inversion of Gravity Gradiometer Data[C]//SEG Int'l Exposition and Annual Meeting. San Antonio:[s. n.], 2001:1470-1473. [24] 秦朋波. 重力和重力梯度数据联合反演方法研究[D]. 长春:吉林大学,2016. Qin Pengbo. A Study on Integrated Gravity and Gravity Gradient Data in Inversion[D]. Changchun:Jilin University, 2016. [25] Ennen C. Mapping Gas-Charged Fault Blocks Around the Vinton Salt Dome, Louisiana Using Gravity Gradiometry Data[D].Houston:University of Houston, 2012. [26] Ennen C, Hall S. Structural Mapping of the Vinton Salt Dome, Louisiana, Using Gravity Gradiometry Data[C]//2011 SEG Annual Meeting.[S. l.]:Society of Exploration Geophysicists, 2011:15. [27] 侯振隆. 重力全张量梯度数据的并行反演算法研究及应用[D]. 长春:吉林大学,2016. Hou Zhenlong. Research and Application of the Parallel Inversion Algorithms Based on the Full Tensor Gravity Gradiometry Data[D].Changchun:Jilin University, 2016. [28] 耿美霞. 基于地质统计学的重力梯度全张量数据三维反演方法研究[D]. 长春:吉林大学,2015. Geng Meixia. The Study of 3D Inversion of Full Tensor Gravity Gradiometry Data Based on Geostatistics Method[D]. Changchun:Jilin University, 2015. [29] Geng M, Huang D, Yang Q, et al. 3D Inversion of Airborne Gravity Gradiometry Data Using Cokriging[J]. Geophysics, 2014, 79(4):G37-G47. [30] Thompson S A, Eichelberger O H. Vinton Salt Dome, Calcasieu Parish, Louisiana[J]. AAPG Bulletin, 1928, 12(4):385-394. [31] Marfurt K J, Zhou H W, Sullivan E C. Development and Calibration of New 3-D Vector VSP Imaging Technology:Vinton Salt Dome, LA[R]. Texas:University of Houston, 2004. [32] Oliveira V C, Barbosa V C F.3-D Radial Gravity Gradient Inversion[J]. Geophysical Journal International, 2013, 195(2):883-902. |
[1] | 孙勇, 于平, 王新月, 黄大年. 基于多元线性回归的航空重力梯度测量自身梯度校正[J]. 吉林大学学报(地球科学版), 2020, 50(3): 883-894. |
[2] | 刘招君, 柳蓉, 孙平昌, 孟庆涛, 胡菲. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325. |
[3] | 刘洪波, 吴治国, 郑孝诚, 王恩强, 王玉敏, 张宁. 沂沭断裂带莱州湾海域重力场特征[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1438-1447. |
[4] | 张雅晨, 刘财, 陈光宇. 基于Hartley变换的归一化总梯度法[J]. 吉林大学学报(地球科学版), 2019, 49(3): 830-836. |
[5] | 王新月, 刘杰, 孙澎勇, 陈科, 李军. 基于车载重力测量平台的城市地下空洞快速探测[J]. 吉林大学学报(地球科学版), 2019, 49(3): 837-844. |
[6] | 郝梦成, 张凤旭, 杜威, 李银飞, 任朗宁. Chebyshev低通滤波器在位场数据波数域导数换算中的应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 559-568. |
[7] | 梁生贤. 互相关系数自约束的重力三维反演与高效求解[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1473-1482. |
[8] | 马国庆, 明彦伯, 黄大年. 基于重磁异常的新生代丽水—椒江凹陷基底分布特征研究[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1493-1500. |
[9] | 范雕, 李姗姗, 孟书宇, 邢志斌, 冯进凯. 利用重力异常反演马里亚纳海沟海底地形[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1483-1492. |
[10] | 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221-1230. |
[11] | 梁文婧, 冯晅, 刘财, 恩和得力海, 张明贺, 梁帅帅. 多输入多输出极化步进频率探地雷达硬件系统开发[J]. 吉林大学学报(地球科学版), 2018, 48(2): 483-490. |
[12] | 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444. |
[13] | 王泰涵, 黄大年, 马国庆, 李野, 林松. 基于并行预处理算法的三维重力快速反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 384-393. |
[14] | 杜威, 许家姝, 吴燕冈, 郝梦成. 位场垂向高阶导数的Tikhonov正则化迭代法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 394-401. |
[15] | 谭晓迪, 黄大年, 李丽丽, 马国庆, 张代磊. 小波结合幂次变换方法在边界识别中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(2): 420-432. |
|