吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 543-551.doi: 10.13278/j.cnki.jjuese.20200169

• 地球探测与信息技术 • 上一篇    

三维重力梯度局部光滑约束反演

罗永超, 李桐林, 张镕哲   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2020-07-21 发布日期:2021-04-06
  • 通讯作者: 李桐林(1962-),男,教授,博士生导师,主要从事地球物理数据的处理与解释方面的研究,E-mail:1612935037@qq.com E-mail:1612935037@qq.com
  • 作者简介:罗永超(1995-),男,硕士研究生,主要从事重力及其梯度数据的处理与解释方面的研究,E-mail:593727741@qq.com
  • 基金资助:
    国家重点研发计划项目(2017YFC0601606);中国博士后科学基金特别资助(站前)项目(2020TQ0114);中国博士后科学基金项目(2020M681036)

Local Smooth Inversion of 3D Gravity Gradient

Luo Yongchao, Li Tonglin, Zhang Rongzhe   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2020-07-21 Published:2021-04-06
  • Supported by:
    Supported by the National Key Research and Development Project (2017YFC0601606),the China Post-Doctoral Science Foundation Special Grants (Pre-Station) Projects (2020TQ0114) and the Project Funded by China Postdoctoral Science Foundation (2020M681036)

摘要: 针对重力勘探中光滑反演存在的分辨率较低的问题,本文提出一种基于地质体埋深、地层倾向等一定先验信息的局部光滑约束三维反演算法,并提出了一种光滑反演中粗糙度矩阵的存储方式,该存储方式可以将M×N维粗糙度矩阵存储为M×2维,减少了计算机计算内存,且详细介绍了该存储方式下粗糙度矩阵与其他矩阵相乘时,粗糙度矩阵所存储的位置信息的读取方式以及与其他矩阵逐列逐步相乘最终得到计算结果的过程。最后,利用文中提出的算法对理论模型和实测数据进行反演试算,结果表明局部光滑反演算法相比于全局光滑反演结果更加准确,且该算法在一定噪声水平下依然稳定,在实际生产中有效可行。

关键词: 重力梯度, 粗糙度矩阵存储, 局部光滑约束, 反演

Abstract: Aiming at the low resolution problem of smooth inversion in gravity exploration, the authors proposed a local smooth constrained three-dimensional inversion algorithm based on certain prior information such as the depth of geological bodies and stratum inclination, and a storage method of roughness matrix in smooth inversion. By this method the computer's calculation memory can be reduced through storing the M×N dimension roughness matrix as M×2 dimension, and when the roughness matrix is multiplied by other matrices in this storage mode, the position information stored in the roughness matrix can be read,and the calculating results can be obtained. The theoretical model and measured data were used to perform inversion trial calculations using the algorithm proposed in this study. It is shown that the result of the local smooth inversion algorithm is more accurate than the result of the global smooth inversion, and the algorithm is still stable,effective,and feasible under a given noise level in production.

Key words: gravity gradient, roughness matrix storage, partial smooth constraint, inversion

中图分类号: 

  • P631.1
[1] 李阳,薛兆杰.中国石化油藏地球物理技术进展与探讨[J].石油物探,2020,59(2):159-168. Li Yang, Xue Zhaojie. Progress and Development Directions of Reservoir Geophysics at SINOPEC[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):159-168.
[2] 刘财,杨宝俊,冯暄,等.论油气资源的多元勘探[J].吉林大学学报(地球科学版),2016,46(4):1208-1220. Liu Cai, Yang Baojun, Feng Xuan, et al. Multivariate Exploration Technology of Hydrocarbon Resources[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1208-1220.
[3] 曾华霖.重力梯度测量的现状及复兴[J].物探与化探, 1999, 23(1):1-6. Zeng Hualin. Present State and Revival of Gravity Gradiometry[J]. Geophysical and Geochemical Exploration, 1999, 23(1):1-6.
[4] Martinez C, Li Y, Krahenbubhl R, et al. Case History 3D Inversion of Airborne Gravity Gradiometry Data in Mineral Exploration:A Case Study in the Quadrilátero Ferrífero, Brazil[J]. Geophysics, 2013, 78(1):B1-B11.
[5] 王家映. 地球物理反演理论[M]. 北京:高等教育出版社, 1998. Wang Jiaying. Inverse Theory in Geophysics[M]. Beijing:Higher Education Press, 1998.
[6] Li Y G, Oldenburg D W. 3-D Inversion of Gravity Data[J]. Geophysics, 1998, 63:103-119.
[7] Li Y G. 3-D Inversion of Gravity Gradiometer Data[C]//SEG Technical Program Expanded Abstracts 2001.[S.l.]:Society of Exploration Geophysicists, 2001:1470-1474.
[8] 王浩然,陈超,杜劲松.重力梯度张量数据的三维反演方法与应用[J].石油地球物理勘探,2013, 48(3):474-481. Wang Haoran, Chen Chao, Du Jinsong. 3-D Inversion of Gravity Gradient Tensor Data and Its Applications[J]. Oil Geophysical Prospecting, 2013, 48(3):474-481.
[9] Silva J B C, Medeiros W E, Barbosa V C F. Potential-Field Inversion:Choosing the Appropriate Technique to Solve a Geologic Problem[J]. Geophysics, 2001, 66:511-520.
[10] 郭冬.先验地质信息约束下的重磁三维反演研究:以庐枞矿集区为例[D].合肥:合肥工业大学,2014. Guo Dong. Geological-Constrained 3D Gravity and Magnetic Inversion Research:A Case Study in Lu-Zong Ore Concentration District[D]. Hefei:Hefei University of Technology, 2014.
[11] 马国庆,孟庆发,李丽丽,等.利用重/磁场梯度比值函数计算地质体深度[J].石油地球物理勘探,2019,54(1):229-234. Ma Guoqing, Meng Qingfa, Li Lili, et al. Gradient Ratio Function of Gravity and Magnetic Data for Geological Body Depth Calculation[J]. Oil Geophysical Prospecting, 2019, 54(1):229-234.
[12] 郑玉君,侯振隆,巩恩普,等.基于深度加权的多分量重力梯度数据联合相关成像方法[J].吉林大学学报(地球科学版),2020,50(4):1197-1210. Zheng Yujun, Hou Zhenlong, Gong Enpu, et al. Correlation Imaging Method with Joint Multiple Gravity Gradiometry Data Based on Depth Weighting[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(4):1197-1210.
[13] 秦朋波.重力和重力梯度数据联合反演方法研究[D].长春:吉林大学,2016. Qin Pengbo. A Study on Integrated Gravity and Gravity Gradient Data in Inversion[D]. Changchun:Jilin University, 2016.
[14] 陈涛.三维重力梯度快速正反演研究[D].北京:中国地质大学(北京),2014. Chen Tao. Fast Forward Mapping and Fast Inversion for Gravity Gradiometer Data[D].Beijing:China University of Geosciences (Beijing), 2014.
[15] 陈少华.基于预条件共轭梯度法的重力梯度张量反演研究[D].长沙:中南大学,2012. Chen Shaohua. Inversion Research of Gravity Gradient Tensor Based on Preconditioned Conjugate Gradient[D]. Changsha:Central South University, 2012.
[16] 高秀鹤,黄大年,孙思源,等.重力梯度数据协克里金三维反演确定岩脉倾向[J].吉林大学学报(地球科学版), 2017,47(2):589-596. Gao Xiuhe, Huang Danian, Sun Siyuan, et al. Identify the Dip Angle of the Dipping Dike Model Based on Cokriging Inversion of Gravity Gradient Data[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):589-596.
[17] 黄天统,彭新发,朱自强.基于非结构化网格的重力梯度张量反演[J].物探与化探,2020,44(1):132-140. Huang Tiantong, Peng Xinfa, Zhu Ziqiang. Inversion of Gravity Gradient Tensor Based on Unstructured Grids[J]. Geophysical and Geochemical Exploration, 2020, 44(1):132-140.
[18] 姚长利,郝天珧,管志宁,等.重磁遗传算法三维反演中高速计算及有效存储方法技术[J].地球物理学报, 2003,46(2):252-258. Yao Changli, Hao Tianyao, Guan Zhining, et al. High-Speed Computation and Efficient Storage in 3-D Gravity and Magnetic Inversion Based on Genetic Algorithms[J]. Chinese Journal of Geophysics, 2003,46(2):252-258.
[19] 姚长利, 郝天珧, 管志宁. 重磁反演约束条件及三维物性反演技术策略[J]. 物探与化探, 2002, 26(4):253-257. Yao Changli, Hao Tianyao, Guan Zhining. Restrictions in Gravity and Magnetic and Technical Strategy of 3D Properties Inversion[J]. Geophysical and Geochemical Exploration, 2002, 26(4):253-257.
[20] 舒晴,朱晓颖,周坚鑫,等.矩形棱柱体重力梯度张量异常正演计算公式[J].物探与化探,2015,39(6):1217-1222. Shu Qing, Zhu Xiaoying, Zhou Jianxin, et al. Forward Modeling Expressions for Right Rectangular Prism with Constant Density[J]. Geophysical and Geochemical Exploration, 2015, 39(6):1217-1222.
[21] 刘天佑.位场勘探数据处理新方法[M].北京:科学出版社,2007. Liu Tianyou. A New Method of Data Processing for Potential Field Exploration[M]. Beijing:Science Press, 2007.
[22] Steven C. Constable, Occam's Inversion:A Practical Algorithm for Generatlng Smooth Models from Electromagnetic Sounding Data[J]. Geophysics, 1987, 52(3):289-300.
[23] Portniaguine O,Zhdanov M S. 3-D Magnetic Inversion with Data Compression and Image Focusing[J]. Geophysics, 2002, 67(5):1532-1541.
[24] 姚长利,郑元满,张聿文.重磁异常三维物性反演随机子域法方法技术[J].地球物理学报,2007,50(5):1576-1583. Yao Changli, Zheng Yuanman, Zhang Yuwen. 3-D Gravity and Magnetic Inversion for Physical Properties Using Stochastic Subspaces[J]. Chinese Journal of Geophysics, 2007,50(5):1576-1583.
[25] 滕民强. 三维地球物理勘探技术在隐伏矿产勘查中的应用研究报告[R].哈尔滨:黑龙江省地球物理地球化学勘查院,2019. Teng minqiang. Research Report on the Application of 3D Geophysical Exploration Technology in the Exploration of Hidden Minerals[R].Harbin:Heilongjiang Institute of Geophysical and Geochemical Exploration,2019.
[1] 孙建国. 利用Munk公式和海底反射走时反演深海水体速度:理论[J]. 吉林大学学报(地球科学版), 2021, 51(1): 1-12.
[2] 孙立影, 杨晨, 赵海士, 常志勇. 基于极限学习机的遥感地球化学反演模型[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1929-1938.
[3] 郑玉君, 侯振隆, 巩恩普, 张永利. 基于深度加权的多分量重力梯度数据联合相关成像方法[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1197-1210.
[4] 王铁兴, 王德利, 孙婧, 胡斌, 刘思秀. 基于三维稀疏反演的混合震源数据分离与一次波估计[J]. 吉林大学学报(地球科学版), 2020, 50(3): 895-904.
[5] 孙勇, 于平, 王新月, 黄大年. 基于多元线性回归的航空重力梯度测量自身梯度校正[J]. 吉林大学学报(地球科学版), 2020, 50(3): 883-894.
[6] 陈守田, 吴玉金, 付喜春, 张文龙, 安朝晖, 丛培泓. 肇源地区薄砂体精细刻画及水平井轨迹设计[J]. 吉林大学学报(地球科学版), 2020, 50(2): 598-607.
[7] 闫英伟, 王者江, 韩飞, 刘聪, 曾凡杰. 多模式面波非线性反演[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1768-1779.
[8] 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476.
[9] 杨悦, 翁爱华, 张艳辉, 李世文, 李建平, 唐裕. 基于可控源电磁法阻抗信息的有限内存拟牛顿法三维反演[J]. 吉林大学学报(地球科学版), 2019, 49(2): 591-602.
[10] 梁生贤. 互相关系数自约束的重力三维反演与高效求解[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1473-1482.
[11] 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221-1230.
[12] 王泰涵, 黄大年, 马国庆, 李野, 林松. 基于并行预处理算法的三维重力快速反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 384-393.
[13] 刘新彤, 刘四新, 孟旭, 傅磊. 低频缺失下跨孔雷达包络波形反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 474-482.
[14] 翁爱华, 李斯睿, 杨悦, 李大俊, 李建平, 李世文. 磁电法基本原理、发展现状及前景展望[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1838-1854.
[15] 王通, 王德利, 冯飞, 程浩, 魏敬轩, 田密. 三维稀疏反演多次波预测及曲波域匹配相减技术[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1865-1874.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!