吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (1): 1-12.doi: 10.13278/j.cnki.jjuese.20200090

• 专家论坛 •    

利用Munk公式和海底反射走时反演深海水体速度:理论

孙建国   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2020-04-16 发布日期:2021-02-02
  • 作者简介:孙建国(1956-),男,教授,博士生导师,主要从事地下波动理论与成像技术、复杂介质中弹性波和电磁波传播与散射、计算地球物理、快速算法、海洋反射地震资料处理以及岩石物理等方面的教学和研究工作,E-mail:sun_jg@jlu.edu.cn
  • 基金资助:
    国家重点研发计划(2019YFC0312004)

Inversion of the Deep Sea Water Velocity by Using Munk Formulaand Seabed Reflection Travel Time

Sun Jianguo   

  1. College for GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2020-04-16 Published:2021-02-02
  • Supported by:
    Supported by the National Key R&D Program of China (2019YFC0312004)

摘要: 为解决深海水体速度建模问题,建立了两个利用Munk公式和海底反射走时反演深海水体速度的反演理论,一个是射线走时反演理论,另一个是波动方程走时反演理论。具体地讲,是建立了地震波走时关于Munk参数的Fréchet导数和海森矩阵公式。为得到射线走时的Fréchet导数和海森矩阵,利用了3种不同的方法,即变分法、微扰法和Taylor级数展开法。这3种方法在理论上完全等价,其最终结果也完全相同。为得到波动方程走时反演理论中的Fréchet导数和海森矩阵,利用复合函数求导的链式法则对文献中的有关结果进行变换,以将其从面向速度本身的Fréchet导数和海森矩阵变换为面向Munk参数的Fréchet导数和海森矩阵。此外,还提出了实现利用Munk公式和海底反射走时构建深海水体声速剖面的5个策略,包括利用解析公式计算海底反射走时的由下至上的射线追踪策略,选用最简单的海底边界条件把数值模拟区域限定为水体的策略,用已知的深海声道轴深度和交替反演策略将四参数反演问题转简化为单参数反演问题的策略,由点到面,利用一维声速剖面公式实现深海水体的维速度建模的策略,以及用最简单的算法实现走时反演的最优化计算策略等。与常规走时反演相比,利用Munk公式进行的海底反射走时反演最多只需要反演4个参数,并可利用交替反演将四参数反演化为单参数反演,大大地减少了走时反演的计算量。

关键词: 深海水体, 速度建模, 海底反射, 走时反演, Fréchet导数, 海森矩阵

Abstract: Using ideas from computational electromagnetics and the basic procedure from the domain decomposition method, we present a biaxial parabolic approximation method for enlarging the angle domain in which the parabolic approximation to the acoustic wave equation is multiple applied and that can be used for migrating data with super-wide angles. Mathematically, the biaxial approximation is a special case of the multiaxial parabolic approximation, and thus can be straightforwardly extended to multiaxial approximations. In detail, we first divide the subsurface into several fan-shaped subdomains and use the axis of each subdomain as the local wave propagation direction. Then, we make a parabolic approximation to the wave equation in each subdomain with respect to the corresponding symmetry axis and compute the forward-propagating wave alternately using a high-order parabolic approximated wave equation in two subdomains. Finally, we use the computed forward-propagating wave as the boundary condition for calculating the back-scattered wave and Green's function by applying the thin slab approximation. Compared with most one-way methods, the proposed method can deal with the strong velocity contrast in the horizontal direction at a large scattering angles. Moreover, compared with certain full-wave methods that have been published in recent years, the proposed method is considerably more efficient and sacrifices only a little in terms of accuracy. Numerical results from comparisons with models of different complexities demonstrate that our method is cost-effective and has considerable potential for use in seismic modeling and imaging.

Key words: deep sea water body, velocity model building, seabed reflection, traveltime inversion, Fréchet derivative, Hessian matrix

中图分类号: 

  • P631.4
[1] Jensen F B, Kuperman W A, Poter M B, et al. Computational Ocean Acoustics[M]. New York:Springer, 2011.
[2] Jones E J W. Marine Geophysics[M]. London:University College London, 1999.
[3] Munk W H. Sound Channel in an Exponentially Stratified Ocean, with Application to SOFAR[J]. Journal of Acoustical Society of America, 1974,55(2):220-226.
[4] 韩复兴,孙建国,王坤. 深海声道对波场传播的影响[J]. 石油地球物理勘探,2014,49(3):444-450. Han Fuxing, Sun Jianguo, Wang Kun. Deep Sea Channel Influence on Wave Field Energy Propagation[J]. Oil Geophysical Prospecting, 2014, 49(3):444-450.
[5] Han F, Sun J, Wang K. The Influence of Sea Water Velocity Variation on Seismic Traveltimes, Ray Paths, and Amplitude[J]. Applied Geophysics, 2012, 9(3):319-325.
[6] 姬莉莉,林缅.中尺度涡影响下目的层地震成像的畸变与影响因素分析[J]. 地球物理学报,2013, 56(1):195-203. Ji Lili, Lin Mian. The Distortion of Seismic Imaging in the Presence of Mesoscale Eddies and Analysis of Influencing Factors[J]. Chinese Journal of Geophysics, 2013, 56(1):195-203.
[7] Bertrand A, MacBeth C. Seawater Velocity Variations and Real-Time Reservoir Monitoring[J]. The Leading Edge, 2003, 22(4):351-355.
[8] 韩复兴,孙建国,王坤,等. 海水速度差异对中深层偏移成像的影响分析[J].地球物理学报,2015,58(9):3439-3447. Han Fuxing, Sun Jianguo, Wang Kun, et al. Analysis of the Influence of Sea Velocity Difference on Migration Imaging in Middle and Deep Layers[J]. Chinese Journal of Geophysics, 2015,58(9):3439-3447.
[9] 鲁统祥,张文祥,邓勇,等. 针对海洋水层反射的处理方法研究[J]. 地球物理学进展,2018, 33(3):1247-1254. Lu Tongxiang, Zhang Wenxiang, Deng Yong, et al. Method for Processing the Seismic Reflection of Sea Water[J]. Progress in Geophysics, 2018, 33(3):1247-1254.
[10] Ritter G L da S. Water Velocity Estimation Using Inversion Methods[J]. Geophysics, 2010, 75(1):U1-U8.
[11] Červen' V. Seismic Ray Theory[M]. Cambridge:Cambridge University Press, 2001.
[12] Goldin S V. Seismic Traveltime Inversion[M]. Tulsa:SEG, 1989.
[13] Pica A, Diet J P, Tarantola A. Nonlinear Inversion of Seismic Reflection Data in a Laterally Invariant Medium[J]. Geophysics, 1990, 55(3):284-292.
[14] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社,2004. Zhang Xianda. Matrix Analysis and Applications[M]. Beijing:Qinghua University Press, 2004.
[15] Luo Y, Schuster G. Wave-Equation Traveltime Inversion[J]. Geophysics, 1991, 56(5):645-653.
[16] 孙建国,苗贺. 基于Chebyshev走时逼近的三维多次反射射线计算[J]. 吉林大学学报(地球科学版),2018,48(3):890-899. Sun Jianguo, Miao He. Computation of Three Dimensional Multi-Reflection Rays Based on Traveltimes Numerical Approximation Using Chebyshev Polynomials[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):890-899.
[17] 孙建国,李懿龙,孙章庆,等. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版),2018,48(2):343-349. Sun Jianguo, Li Yilong, Sun Zhangqing, et al. Computation of Seismic Traveltimes and Ray Path Based on Model Parameterization[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2):343-349.
[18] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用:研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版),2016,46(4):1231-1259. Sun Jianguo. High-Frequency Asymptotic Scattering Theories and Their Applications in Numerical Modeling and Imaging of Geophysical Fields:An Overview of the Research History and the State-of-the-Art, and Some New Developments[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1231-1259.
[19] 孙建国. 声波散射数值模拟的两种新方案[J]. 吉林大学学报(地球科学版), 2006, 36(5):863-868. Sun Jianguo. Two New Schemes for Numerical Modeling of Acoustic Scattering[J]. Journal of Jilin University (Geoscience Edition), 2006, 36(5):863-868.
[20] 刘巍,王勇献,张理论. 数值海洋声学[M]. 北京:科学出版社,2019. Liu Wei, Wang Yongxian, Zhang Lilun. Numerical Ocean Acoustics[M]. Beijing:Science Press, 2019.
[21] Sun B, Alkhalifah T. Adaptive Traveltime Inversion[J]. Geophysics, 2019, 84(4):U13-U29.
[22] Luo Y, Ma Y, Wu Y, et al. Full-Traveltime Inversion[J]. Geophysics, 2016, 81(5):R261-R274.
[23] Saragiotis C, Alkhalifah T, Fomel S. Automatic Traveltime Picking Using Instantaneous Traveltime[J]. Geophysics, 2013, 78(2):T53-T58.
[24] 刘伯胜,黄益旺,陈文剑,等. 水声学原理[M]. 3版.北京:科学出版社,2019. Liu Bosheng, Huang Yiwang, Chen Wenjian, et al.Principles of Water Acoustics[M]. 3rd Ed. Beijing:Science Press, 2019.
[25] 汪德昭,尚尔昌. 水声学[M]. 2版. 北京:科学出版社,2017. Wang Dezhao, Shang Erchang. Water Acoustics[M]. 2nd Ed. Beijing:Science Press, 2017.
[1] 阮庆丰, 刘财, 刘俊清, 张宇, 郑国栋. 2019年5月18日松原M5.1地震构造机制分析[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1897-1904.
[2] 达姝瑾, 李学贵, 董宏丽, 李含阳. 微地震震源定位方法综述[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1228-1239.
[3] 田雅男, 王环宇, 王鑫, 黄佳俊, 章强. 压裂微震数据初至拾取的时频谱熵法[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1219-1227.
[4] 王铁兴, 王德利, 孙婧, 胡斌, 刘思秀. 基于三维稀疏反演的混合震源数据分离与一次波估计[J]. 吉林大学学报(地球科学版), 2020, 50(3): 895-904.
[5] 李启成, 郭雷, 何书耕, 闵也. 改进的确定折射面法线深度的t0[J]. 吉林大学学报(地球科学版), 2020, 50(3): 905-910.
[6] 邵广周, 赵凯鹏, 吴华. 基于MPI的面波有限差分正演模拟[J]. 吉林大学学报(地球科学版), 2020, 50(1): 294-303.
[7] 雷东宁, 乔岳强, 胡庆, 王秋良, 林松, 李雪. 丹江断裂东段第四纪活动性及地震地质涵义[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1362-1375.
[8] 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476.
[9] 孙章庆, 汪登科, 韩复兴. 复杂海底各种地震波的射线追踪与运动学特征[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1169-1181.
[10] 肖汉, 王德利. 基于快速匹配法的VTI介质走时计算[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1160-1168.
[11] 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159.
[12] 薛林福, 祝铭, 李文庆, 刘文玉, 刘正宏, 刘泽宇. 岩浆泡破裂引发地震的模式——以吉林松原2013年地震群为例[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1865-1875.
[13] 林松, 李媛, 程邈, 邓小虎, 王薇. 嘉鱼断裂西向延伸与第四系活动特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1501-1511.
[14] 刘财, 裴思嘉, 郭智奇, 符伟, 张宇生, 刘喜武. 非均匀介质地震AVO响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1512-1521.
[15] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!