吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1243-1255.doi: 10.13278/j.cnki.jjuese.20200123

• 地球探测与信息技术 • 上一篇    下一篇

基于经验低秩表示的自适应多次波减去方法

胡斌, 王德利, 王睿, 朱虹宇   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2020-05-10 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:胡斌(1991-),男,博士研究生,主要从事多次波压制方法研究,E-mail:binhu@jlu.edu.cn
  • 基金资助:
    国家科技重大专项项目(2016ZX05026-002-003);国家自然科学基金项目(41374108)

Adaptive Subtraction of Multiples Based on Empirical Low-Rank Representation

Hu Bin, Wang Deli, Wang Rui, Zhu Hongyu   

  1. College of GeoExploration Sicence and Technology, Jilin University, Changchun 130026, China
  • Received:2020-05-10 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the Major Projects of the National Science and Technology of China (2016ZX05026-002-003) and the National Natural Science Foundation of China (41374108)

摘要: 多次波压制一直是海洋地震数据处理的研究重点,SRME(surface-related multiple elimination)方法通过多次波预测、自适应减去两个步骤实现多次波压制,具有压制精度高、模型依赖度低等优点,是工业界广泛采用的方法。但是常规减去方法在一次波、多次波交叉位置易出现一次波损伤、多次波残留等现象,进而增加后续地震处理、解释的难度。本文在前人研究的基础上,提出了基于经验低秩表示的自适应多次波减去方法。首先,采用经验低秩表示方法,将地震数据自适应地分解为信噪比高、倾角单一、同相轴相位圆滑的低秩倾角分量,简化地震数据倾角成分的复杂程度,以优化低秩表示过程中局部窗口的参数选择问题;然后,在不同低秩倾角分量中分别采用基于能量最小原则的匹配减去方法,避免匹配过程出现同相轴交叉,并重构各分量,在保证计算效率的前提下提升多次波压制效果。针对理论数据和实际数据进行了有效性测试,本文方法在多次波压制结果和保幅性两方面优于传统方法,并采用抗噪性测试证明了该方法的鲁棒性。

关键词: 降秩表示, 经验模态分解, 多次波匹配, 多次波减去

Abstract: Multiple attenuation is a research focus in marine seismic data processing. Due to the advantages of high accuracy and low model dependence, the surface-related multiple elimination method achieves multiple attenuation through multiple prediction and adaptive subtraction, so it is widely used in the industry. However, the conventional adaptive subtraction method is not applicable at the primary and multiple intersections, and the phenomenon of primary damage and multiple residuals will increase the difficulty of subsequent seismic processing and interpretation. Based on previous research, in this paper, an adaptive multiple subtraction method based on empirical low-rank representation is proposed. We use the empirical mode decomposition method to improve the conventional low-rank representation method. By adaptively decomposing the seismic signal into low-rank subsets with high signal-to-noise ratio, simple inclination, and smooth event phase, the parameter selection of the local window during the low-rank representation processing is optimized, that is, to reduce the complexity of the dip component of the seismic signal; then the conventional adaptive subtraction method in different low-rank subsets is adopted to avoid the event intersections in the adaptive subtraction, and each subset is reconstructed to improve the multiple attenuation effect under the premise of ensuring the calculation efficiency. In order to verify the effectiveness of the proposed method, we apply it to the synthetic and field examples, the results are better than those of the conventional methods, and the noise sensitivity example proves the robustness of the proposed method.

Key words: low-rank representation, empirical mode decomposition, multiple matching, multiple subtraction

中图分类号: 

  • P631.4
[1] Verschuur D J, Berkhout A J, Wapenaar C P A. Adaptive Surface-Related Multiple Elimination[J]. Geophysics, 1992, 57(9):1166-1177.
[2] Berkhout A J, Verschuur D J. Estimation of Multiple Scattering by Iterative Inversion:Part I:Theoretical Considerations[J]. Geophysics, 1997, 62(5):1586-1595.
[3] Verschuur D J. Estimation of Multiple Scattering by Iterative Inversion:Part II:Practical Aspects and Examples[J]. Geophysics, 1997, 62(5):1596-1611.
[4] Foster D J, Mosher C C. Suppression of Multiple Reflections Using the Radon Transform[J]. Geophysics, 1992, 57(3):386-395.
[5] 石颖, 刘洪, 历玉英. 逆数据域表面多次波压制方法[J].吉林大学学报(地球科学版), 2011, 41(1):271-276. Shi Ying, Liu Hong, Li Yuying. Inverse Data Domain Surface Multiple Suppression Method[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1):271-276.
[6] Guitton A, Verschuur D J. Adaptive Subtraction of Multiples Using the L1-Norm[J]. Geophysical Prospecting, 2004, 52(1):27-38.
[7] 孙成禹,谢俊法,张立,等. 利用多次波和二维匹配滤波的近偏移距数据重构方法[J].吉林大学学报(地球科学版), 2017, 47(1):224-233. Sun Chengyu, Xie Junfa, Zhang Li, et al. Near-Offset Data Reconstruction Method Using Multiple Wave and Two-Dimensional Matching Filtering[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):224-233.
[8] Herrmann F J, Urs B, Verschuur D J. Non-Linear Primary-Multiple Separation with Directional Curvelet Frames[J]. Geophysical Journal of the Royal Astronomical Society, 2007, 170(2):781-799.
[9] Herrmann F J, Wang D L, Hennenfent G. Multiple Prediction from Incomplete Data with the Focused Curvelet Transform[J]. Society of Exploration Geophysicists, 2007(1):2505.
[10] Wang D, Saab R, Yilmaz O, et al. Bayesian Wavefield Separation by Transform-Domain Sparsity Promotion[J]. Geophysics, 2008, 73(5):A33-A38.
[11] 王德利, 党丹, 刘伟明,等. CFP技术层间多次波预测及Curvelet域相减方法[J].吉林大学学报(地球科学版), 2011, 41(3):907-914. Wang Deli, Dang Dan, Liu Weiming, et al. CFP Technology Internal Multiple Prediction and Curvelet Domain Subtraction Method[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3):907-914.
[12] 王通, 王德利,冯飞, 等.三维稀疏反演多次波预测及曲波域匹配相减技术[J].吉林大学学报(地球科学版), 2017, 47(6):1865-1874. Wang Tong, Wang Deli, Feng Fei, et al. Three-Dimensional Sparse Inversion Multiple Prediction and Curvelet Domain Matching and Subtraction Technology[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1865-1874.
[13] 刘成明, 王德利. 基于贝叶斯理论的Shearlet域一次波与多次波分离[J]. 石油学报, 2016, 37(4):483-489. Liu Chengming, Wang Deli. Separation of Primary and Multiples in Shearlet Domain Based on Bayesian Theory[J]. Acta Petrolei Sinica, 2016, 37(4):483-489.
[14] Markovsky I. Low Rank Approximation:Algorithms, Implementation, Applications[M]. Berlin:Springer Publishing Company, Incorporated, 2011.
[15] Chen Y K, Bai M, Guan Z, et al. Five-Dimensional Seismic Data Reconstruction Using the Optimally Damped Rank-Reduction Method[J]. Geophysical Journal International, 2019,218(1):1.
[16] Gao J, Stanton A, Sacchi M. Parallel Matrix Factorization Algorithm and Its Application to 5D Seismic Reconstruction and Denoising[J]. Geophysics, 2015, 80(6):V173-V187.
[17] Hu B, Wang D L, Zhang L, et al. Structural Analysis of Lunar Regolith from LPR CH-2 Data Based on Adaptive f-x E MD:LPR Data[J]. Advances in Astronomy, 2019(1):1528-1542.
[18] Chen Y, Zhang D, Jin Z, et al. Simultaneous Denoising and Reconstruction of 5D Seismic Data via Damped Rank-Reduction Method[J]. Geophysical Journal International, 2016, 206(3):1695-1717.
[19] Bai M, Wu J, Zu S, et al. A Structural Rank Reduction Operator for Removing Artifacts in Least-Squares Reverse Time Migration[J]. Computers and Geosciences, 2018,117(8):9-20.
[20] Huang W, Wang R, Chen Y, et al. Damped Multichannel Singular Spectrum Analysis for 3D Random Noise Attenuation[J]. Geophysics, 2016, 81(4):V261-V270.
[21] Zou X, Ma Y, Qin Z. Fengyun-3B Microwave Humidity Sounder (MWHS) Data Noise Characterization and Filtering Using Principle Component Analysis[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(12):4892-4902.
[22] Cai J F, Candès E J, Shen Z. A Singular Value Thresholding Algorithm for Matrix Completion[J]. Siam Journal on Optimization, 2010, 20(4):1956-1982.
[23] Horn R A, Johnson C R. Matrix Analysis:矩阵分析[M]. 北京:人民邮电出版社, 2015. Horn R A, Johnson C R. Matrix Analysis[M]. Beijing:Posts & Telecom Press, 2015.
[24] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings A, 1998, 454:903-995.
[25] Chen Y, Zhou Y, Chen W, et al. Empirical Low-Rank Approximation for Seismic Noise Attenuation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(8):1-16.
[26] 石颖,刘洪,邹振.基于波动方程表面多次波预测与自适应相减方法研究[J].地球物理学报, 2010, 53(7):1716-1724. Shi Ying, Liu Hong, Zou Zhen. Surface-Related Multiples Prediction Based on Wave Equation and Adaptive Subtraction Investigation[J]. Chinese Journal of Geophysics, 2010, 53(7):1716-1724.
[1] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[2] 秦喜文, 刘媛媛, 王新民, 董小刚, 张瑜, 周红梅. 基于整体经验模态分解和支持向量回归的北京市PM2.5预测[J]. 吉林大学学报(地球科学版), 2016, 46(2): 563-568.
[3] 刘霞, 黄阳, 黄敬, 段志伟. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1): 262-269.
[4] 王正海,耿欣,姚卓森,胡光道,方臣. 基于经验模态分解的MT数据脉冲类电磁噪声处理[J]. 吉林大学学报(地球科学版), 2014, 44(1): 344-349.
[5] 王祝文, 王晓丽, 刘菁华, 张雪昂, 向旻, 杨闯. 裂缝性地层声波测井的联合时频特征[J]. J4, 2012, 42(4): 914-920.
[6] 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844.
[7] 佴磊, 彭文, 袁明哲, 周能娟. 基于经验模态分解和加权最小二乘支持向量机的采空区地面塌陷预测[J]. J4, 2011, 41(3): 799-804.
[8] 葸晓宇,刘 洪. HHT方法在研究地震旋回体中的应用[J]. J4, 2007, 37(3): 624-0628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[2] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[3] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[4] 赵 峰,范海峰,田竹君,王志刚. 吉林省中部不同土地利用类型的土壤侵蚀强度变化分析[J]. J4, 2005, 35(05): 661 -666 .
[5] 肖长来,张力春,方 樟,贾 涛. 洮儿河扇形地地表水与地下水资源的转化关系[J]. J4, 2006, 36(02): 234 -0239 .
[6] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[7] 张凡芹,王伟锋,王建伟,孙粉锦,刘锐娥. 苏里格庙地区凝灰质溶蚀作用及其对煤成气储层的影响[J]. J4, 2006, 36(03): 365 -369 .
[8] 霍秋立,汪振英,李敏,付丽,冯大晨. 海拉尔盆地贝尔凹陷油源及油气运移研究[J]. J4, 2006, 36(03): 377 -383 .
[9] 姜晓轶,周云轩. 从空间到时间——时空数据模型研究[J]. J4, 2006, 36(03): 480 -485 .
[10] 高志前,樊太亮,李 岩,刘武宏,陈玉林. 塔里木盆地寒武-奥陶纪海平面升降变化规律研究[J]. J4, 2006, 36(04): 549 -556 .