吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1482-1489.doi: 10.13278/j.cnki.jjuese.20200247

• 岩土防灾与减灾 • 上一篇    下一篇

路基砾类填料土动力特性影响因素试验分析

周彤, 商广明, 翟亚峰   

  1. 中电建冀交高速公路投资发展有限公司, 石家庄 050051
  • 收稿日期:2020-11-03 出版日期:2021-09-26 发布日期:2021-09-29
  • 作者简介:周彤(1989-),女,硕士研究生,工程师,主要从事道路桥梁工程方面研究,E-mail:zhoutong333@126.com
  • 基金资助:
    河北省交通运输厅科技项目(TH-201925);河北省自然科学基金面上项目(E2018201106)

Experimental Analysis on Influencing Factors of Dynamic Characteristics of Subgrade Gravel Packing Soil

Zhou Tong, Shang Guangming, Zhai Yafeng   

  1. Zhong Dian Jian Ji Jiao Expressway Investment Development Co. Ltd., Shijiazhuang 050051, China
  • Received:2020-11-03 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Science and Technology Project of Hebei Provincial Department of Transportation (TH-201925) and the General Project of Natural Science Foundation of Hebei Province (E2018201106)

摘要: 动应力-动应变关系作为反映路基填料土动力特性的重要参数,对其进行影响因素试验研究可为路基填料土的工程特性研究提供参考依据。本文借助动三轴试验手段进行砾类土动应力-动应变关系影响因素研究,采用应力控制的加载方式进行加载,分析了试验压力、土样含水率、土样压实度、荷载作用频率和初始静偏应力等5种条件和砾类土动力特性的作用规律,并总结砾类土动应力-动应变关系变化规律。研究结果表明:当动三轴试验的围压为30 kPa、土样压实度为96%、含水率为最佳含水率7.5%时,其动应力-动应变关系曲线接近应力轴,砾类土的动强度大;荷载作用频率为1、2 Hz变化时以及小于10 kPa的初始静偏应力对砾类土的动应力-应变关系影响较小;针对各影响因素下的动应力-动应变关系曲线,对其采用的双曲线模型拟合相关系数均大于0.96,说明该模型能够有效拟合其关系曲线;根据试验模型可知,试验中压力越大,参数ab值越小,同理,土样的压实度越大,ab值也越小。

关键词: 砾类土, 动三轴试验, 动应力-动应变, 影响因素

Abstract: The dynamic stress-dynamic strain relationship is an important parameter reflecting the dynamic characteristics of subgrade filling soil, and the experimental study of its influencing factors can provide a reference for the engineering characteristics of subgrade filling soil. In this paper, the authors use the dynamic triaxial test method to study the influence factors of gravel-like soil, adopt the stress-controlled loading method to load, analyze five conditions such as test pressure, soil sample moisture content, soil sample compressibility, load frequency,and initial static deviatoric stresses of gravel-like soil, and also summarize the dynamic stress-strain relationship change law of gravel-like soil. The research results show that:1) When the pressure of the dynamic triaxial test is 30 kPa, the compaction of the soil sample is 96%, and the optimal moisture content is 7.5%. The dynamic stress-dynamic strain relationship curve is closer to the stress axis, and the dynamic strength of gravel-like soil is great; 2) When the load frequency changes between 1 and 2 Hz, the initial static deviator stress (less than 10 kPa) has little effect on the dynamic stress-strain relationship of gravel-like soil; 3) The fitting correlation coefficients of the dynamic stress-dynamic strain relationship curve to the hyperbolic model used are all greater than 0.96, indicating that the model can effectively fit the relationship curve; 4) Based on the test model, the greater the pressure in the test, the smaller the values of the parameters a and b; similarly, the greater the compression of the soil sample, the smaller the values of a and b.

Key words: gravel soil, dynamic triaxial test, dynamic stress-dynamic strain, influence factors

中图分类号: 

  • U416. 1
[1] Cerni G, Cardone F, Virgili A, et al. Characterisa-Tion of Permanent Deformation Behaviour of Unbound Granular Materials Under Repeated Triaxial Loading[J]. Con-Struction & Building Materials, 2012, 28(1):79-87.
[2] 戴文亭, 陈星, 张弘强.黏性土的动力特性实验及数值模拟[J]. 吉林大学学报(地球科学版), 2008, 38(5):831-836. Dai Wenting, Chen Xing, Zhang Hongqiang. Experiment and Numerical Simulation of Dynamic Characteristics of Cohesive Soil[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(5):831-836.
[3] 赵玉, 李衍赫, 张培, 等.黏土的动力特性试验[J]. 吉林大学学报(工学版), 2015, 45(6):1791-1797. Zhao Yu, Li Yanhe, Zhang Pei, et al. Experiment on Dynamic Characteristics of Clay[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(6):1791-1797.
[4] 冷伍明, 周文权, 聂如松, 等.重载铁路粗粒土填料动力特性及累积变形分析[J]. 岩土力学, 2016, 37(3):728-736. Leng Wuming, Zhou Wenquan, Nie Rusong, et al. Analysis of Dynamic Characteristics and Accumulative Deformation of Coarse-Grained Soil Filling of Heavy-Haul Railway[J]. Rock and Soil Mechanics, 2016, 37(3):728-736.
[5] 陈剑, 苏跃宏.交通荷载作用下公路路基动力特性的数值模拟研究[J]. 公路交通科技, 2011, 28(5):44-48. Chen Jian, Su Yuehong.Numerical Simulation of Dynamic Performance of Highway Subgrade Under Traffic Loads[J]. Journal of Highway and Transportation Research and Development, 2011, 28(5):44-48.
[6] 冷伍明, 刘文劫, 赵春彦, 等.重载铁路路基压实粗颗粒土填料动力破坏规律试验研究[J]. 岩土力学, 2015, 36(3):640-670. Leng Wuming, Liu Wenjie, Zhao Chunyan, et al. Experimental Research on Dynamic Failure Rules of Compacted Coarse-Grained Soil Filling in Heavy Haul Railway Subgrade[J]. Rock and Soil Mechanics, 2015, 36(3):640-670.
[7] 周葆春, 白颢, 孔令伟, 循环荷载下石灰改良膨胀土临界动应力的探讨[J]. 岩土力学, 2009, 30(增刊2):163-168. Zhou Baochun, Bai Hao, Kong Lingwei. Discussion on Critical Dynamic Stress of Lime-Treated Expansive Soil Under Cvclic Loading[J]. Rock and Soil Mechanics, 2009, 30(Sup.2):163-168.
[8] 石峰, 刘建坤, 房建宏, 等.季节性冻土地区公路路基动应力测试[J]. 中国公路学报, 2013, 25(5):15-20. Shi Feng, Liu Jiankun, Fang Jianhong, et al. Subgrade Dynamic Stress Test on Highway in Seasonal Frozen Soil Area[J]. China Journal of Highway and Transport, 2013, 25(5):15-20.
[9] 张龙, 陈正汉, 周凤玺, 等.非饱和土应力状态变量试验验证研究[J]. 岩土工程学报, 2017, 39(2):380-384. Zhang Long, Chen Zhenghan, Zhou Fengxi, et al. Test Verification of Stress State Variables for Unsaturated Soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2):380-384.
[10] 刘晓红, 杨果林, 方薇.红黏土临界动应力与高铁无碴轨道路堑基床换填厚度[J]. 岩土工程学报, 2013, 35(3):348-353. Liu Xiaohong, Yang Guolin, Fang Wei.Critical Dynamic Stress of Red Clay and Replacement Thickness of Ballastless Track Cutting Bed of High-Speed Railways[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3):348-353.
[11] 王龙, 解晓光, 巴恒静.长期动载下级配碎石材料的塑性变形与临界应力[J]. 同济大学学报(自然科学报), 2010, 38(9):1293-1297. Wang Long, Xie Xiaoguang, Ba Hengjing. Critical Stress and Plastic Deformation of Graded Aggregate Material Under Long-Term Dynamic Repeat Load[J]. Journal of Tongji University(Natural Science), 2010, 38(9):1293-1297.
[12] 王天亮, 刘建坤, 田亚护.水泥及石灰改良土冻融循环后的动力特性研究[J]. 岩土工程学报, 2010, 32(11):1733-1737. Wang Tianliang, Liu Jiankun, Tian Yahu. Dynamic Properties of Cement-and Lime-Improved Soil Subjected to Freeze-Thaw Cycles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11):1733-1737.
[13] 焦贵德, 马巍, 赵淑萍, 等, 高温冻结粉土的累积应变和临界动应力[J]. 岩石力学与工程学报, 2011, 30(增刊1):3193-3198. Jiao Guide, Ma Wei, Zhao Shuping, et al. Accumulated Strain and Critical Dynamic Stress or Frozen Silt at High Temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup.1):3193-3198.
[14] 孔祥辉, 蒋关鲁, 邹祖银, 等.循环荷载下红层泥岩的动力特性及路用性能研究[J]. 岩石力学与工程学报, 2013, 32(9):1813-1819. Kong Xianghui, Jiang Guanlu, Zou Zuyin, et al. Dynamic Characteristics and Pavement Performance of Red Mudstone Subjected to Cyclic Loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9):1813-1819.
[15] 张勇, 孔令伟, 李雄威.循环荷载下饱和软黏土的动骨干曲线模型研究[J]. 岩土力学, 2010, 31(6):1699-1704. Zhang Yong, Kong Lingwei, Li Xiongwei. Dynamic Backbone Curve Model of Saturated Soft Clay Under Cyclic Loading[J]. Rock and Soil Mechanics, 2010, 31(6):1699-1704.
[16] 唐益群, 赵化, 王元东, 等.地铁荷载下隧道周围加固软黏土应变累积特性[J]. 同济大学学报(自然科学版), 2011, 39(7):972-977. Tang Yiqun, Zhao Hua, Wang Yuandong, et al. Characteristics of Strain Accumulation of Reinforced Soft Clay Around Tunnel Under Subway Vibration Loading[J]. Journal of Tongji University(Natural Science), 2011, 39(7):972-977.
[17] 肖军华, 刘建坤.循环荷载下粉土路基土的变形性状研究[J]. 中国铁道科学, 2010, 31(1):1-7. Xiao Junhua, Liu Jiankun. Research on the Deformation Behaviors of Silt Subgrade Soil Under Cyclic Loading[J]. China Railway Science, 2010, 31(1):1-7.
[18] 蔡袁强, 赵莉, 曹志刚, 等.不同频率循环荷载下公路路基粗粒填料长期动力特性试验研究[J]. 岩石力学与工程学报, 2017, 36(5):1238-1246. Cai Yuanqiang, Zhao Li, Cao Zhigang, et al. Experimental Study of Dynamic Characteristics of Unbound Granular Materials Under Cyclic Loading with Different Frequencies[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5):1238-1246.
[19] 陈靖宇, 蔡袁强, 曹志刚.谷川非饱和公路路基填料长期动力特性试验研究[J]. 岩石力学与工程学报, 2018, 37(10):2406-2414. Chen Jingyu, Cai Yuanqiang, Cao Zhigang. Experimental Research on Long-Term Dynamic Characteristics of Unsaturated Road Base and Subbase Mixtures[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10):2406-2414.
[20] 韩爱民, 肖军华, 乔春元, 等.三轴压缩下南京下蜀土的宏、微观性状试验[J]. 吉林大学学报(地球科学版), 2013, 43(6):1897-1903. Han Aimin, Xiao Junhua, Qiao Chunyuan, et al. Experiments on Macro and Micro Properties of Nanjing Xiashu Soil Under Triaxial Compression[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6):1897-1903.
[21] 公路土工试验规程:JTG 3430-2020[S].北京:人民交通出版社, 2020. Highway Geotechnical Test Regulations:JTG 3430-2020[S].Beijing:People's Communications Press, 2020.
[22] 公路路基设计规范:JTG D30-2015[S].北京:人民交通出版社, 2015. Code for Design of Highway Subgrade:JTG D30-2015[S].Beijing:People's Communications Press, 2015.
[1] 王志恒, 梁永平, 申豪勇, 赵春红, 唐春雷, 谢浩, 赵一. 自然与人类活动叠加影响下晋祠泉域岩溶地下水动态特征[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1823-1837.
[2] 刘金萍, 王改云, 简晓玲, 王嘹亮, 杜民, 成古. 北黄海东部次盆地层序地层格架中烃源岩发育特征与影响因素[J]. 吉林大学学报(地球科学版), 2020, 50(1): 1-17.
[3] 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551.
[4] 朱广祥, 郭秀军, 余乐, 孙翔, 贾永刚. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1457-1465.
[5] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[6] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798.
[7] 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251.
[8] 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192.
[9] 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893.
[10] 董德明, 曹珍, 闫征楚, 花修艺, 朱磊, 徐阳, 郭志勇, 梁大鹏. 臭氧-超声联用处理聚乙烯醇废水[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1191-1198.
[11] 李庆洋, 李振春, 黄建平, 李娜, 苏在荣. 基于贴体全交错网格的起伏地表正演模拟影响因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 920-929.
[12] 熊德明, 张明峰, 吴陈君, 妥进才. 基于模糊层次分析方法的泥质有效低熟气源岩评价[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1620-1630.
[13] 战高峰, 朱福, 董伟智, 王静. 季冻区低路堤土基强度与影响因素相关性[J]. 吉林大学学报(地球科学版), 2015, 45(3): 869-875.
[14] 曹阳,滕彦国,刘昀竺. 宁夏吴忠市金积水源地地下水水质影响因素的多元统计分析[J]. 吉林大学学报(地球科学版), 2013, 43(1): 235-244.
[15] 陈勇,何中发,黎兵, 赵宝成. 崇明东滩潮沟发育特征及其影响因素定量分析[J]. 吉林大学学报(地球科学版), 2013, 43(1): 212-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .