吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (3): 869-875.doi: 10.13278/j.cnki.jjuese.201503201

• 地质工程与环境工程 • 上一篇    下一篇

季冻区低路堤土基强度与影响因素相关性

战高峰1,2, 朱福1,2, 董伟智2, 王静2   

  1. 1. 吉林大学建设工程学院, 长春 130026;
    2. 吉林建筑大学交通科学与工程学院, 长春 130118
  • 收稿日期:2014-08-08 发布日期:2015-05-26
  • 作者简介:战高峰(1964),男,教授,博士,主要从事路基路面方面的研究工作,E-mail:zhangaofeng@tom.com。
  • 基金资助:

    国家自然科学基金项目(51308256);吉林省交通运输科技计划项目(2011103)

Influencing Factors of Low Embankment Soil Subgrade Strength in Seasonally Frozen Region

Zhan Gaofeng1,2, Zhu Fu1,2, Dong Weizhi2, Wang Jing2   

  1. 1. Construction Engineering college, Jilin University, Changchun 130026, China;
    2. School of Transportation Science and Engineering, Jilin jianzhu University, Changchun 130118, China
  • Received:2014-08-08 Published:2015-05-26

摘要:

对吉林省高等级低路堤公路填土高度与最大冻深进行了调研,该地区低路堤填土高度为0.0~2.2 m,钻孔数据表明路基最大冻深为距路表1.6~2.4 m。选取3种不同塑性指数的路基土,采用正交表L16(45)进行了试验设计,应用静力成型法,使得土体在设定的含水率和压实度的水平下成型,并经历不同的冻融循环次数后,分别测试土体的无侧限抗压回弹模量。试验结果表明:1)对同一种土质,影响因素的大小排序为:含水率>冻融次数>压实度。2)随着含水率增大,土基强度接近线性减小;随着冻融次数的增加,土基强度逐渐减小,前2次冻融影响较大,之后幅度变小趋于稳定;随着压实度的增大,土基强度逐渐增大,增大幅度较小。3)采用指数函数对3种土的室内试验数据进行多元非线性拟合,拟合结果较好。

关键词: 季冻区, 低路堤, 土基强度, 影响因素, 吉林省, 塑性指数

Abstract:

Through the investigation of filling height and freezing depth of the low embankment high-grade highway soil in Jilin Province, the filling height of the low embankment is found in the range of 0.0 m to 2.2 m in the investigated region. The maximum frozen soil depth is 1.6 m to 2.4 m based on the drilling data. Three kinds of embankment soils with different plasticity indices were selected from seasonal frozen soil regions. The testing schedules were made with the method of orthogonal design(L16(45)). By using the static molding method,the soil samples were compacted differently in its different moisture contents and compactness. After setting freeze-thaw cycles,the unconfined compressive resilient modulus of the soil samples were tested respectively. For the same kind of soil under the different influencing conditions, the experiment results show that the influence of different factors are as following: moisture content> freeze-thaw cycles> compactness. With the increase of themoisture content, the embankment soil strength decreases linearly; with the increase of freeze-thaw cycles, the embankment soil strength decreases, the first and second cycles create a greater impact on embankment soil strength. With the increase of compactness, the embankment soil strength increases, but increasing percentage is small. According to the indoor experiment data, the exponential function is adopted for multiple nonlinear fitting that deliver good results.

Key words: seasonally frozen region, low embankment, soil subgrade strength, influencing factors, Jilin Province, plasticity indices

中图分类号: 

  • TU411.6

[1] 管延华.强度衰减路基稳定性及其路面结构力学响应研究[D]. 徐州:中国矿业大学,2011: 15-66. Guan Yanhua. Stability of Attenuated Strength Subgrade and Mechanics Response of Its Pavement Structure[D]. Xuzhou:China Uiversity of Mining and Technology,2011: 15-66.

[2] 黄雨,江席苗,刘高. 软土路基稳定性影响因素分析[J]. 地下空间与工程学报, 2009, 5(2):372-377. Huang Yu, Jiang Ximiao, Liu Gao, et al. Influence of Some Factors on the Stability of Soft Soil Subgrade[J]. Chinese Journal of Underground Space and Engineering, 2009,5(2): 372-377.

[3] 雒妞丽, 毛雪松. 湿度对青藏公路多年冻土路基稳定性的影响[J]. 路基工程, 2011 (6):5-11. Luo Niuli,Mao Xuesong. Influence of Humidity on Permafrost Subgrade Stability in Qinghai-Tibet Highway[J]. Subgrade Engineering,2011(6):5-11.

[4] 胡梦玲,姚海林,刘杰,等. 干密度对路基性能的影响研究[J]. 岩土力学, 2012,33(增刊2): 91-97. Hu Mengling, Yao Hailin, Liu Jie, et al. Research on Influence of Dry Density on Subgrade Performance[J]. Rock and Soil Mechanics,2012,33(Sup.2): 91-97.

[5] 凌建明, 陈声凯, 曹长伟. 路基土回弹模量影响因素分析[J].建筑材料学报,2007,10(4):446-451. Ling Jianming, Chen Shengkai, Cao Changwei. Analysis of Influence Factors on Resilient Modulus of Subgrade Soils[J]. Journal of Building Materials, 2007,10(4):446-451.

[6] 凌建明,苏华才,谢华昌,等. 路基土动态回弹模量的试验研究[J]. 地下空间与工程学报, 2010,6(5):919-925. Ling Jianming, Su Huacai, Xie Huachang, et al. Laboratory Research on Dynamic Resilient Modulus of Subgrade Soil[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 919-925.

[7] 赵安平,王清,张忠琼. 土体微观结构对冻胀影响的灰色关联及粗糙集评价[J]. 吉林大学学报:地球科学版, 2011,41(3):791-798. Zhao Anping, Wang Qing, Zhang Zhongqiong. Estimate Between Soil Microstructure and Its Frost Heave Using Grey Relation Analysis Method and Rough Set Theory[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(3): 791-798.

[8] van Klaveren R W. Hydraulic Erosion Resistance of Thawing Soil[D]. Pullman:Washington State University, 1987.

[9] Simonsen E, Janoo V C, Isacsson U. Resilient Properties of Unbound Road Materials During Seasonal Frost Conditions[J]. Journal of Cold Regions Engineering, 2002,16(1): 28-50.

[10] 王静,刘寒冰,吴春利,等. 冻融循环对不同塑性指数路基土弹性模量的影响研究[J]. 岩土力学, 2012,33(12):3665-3668. Wang Jing, Liu Hanbing, Wu Chunli, et al. Influence of Freeze-Thaw Cycles on Elastic Modulus of Subgrade Soil with Different Plasticity Indices[J]. Rock and Soil Mechanics, 2012, 33(12): 3665-3668.

[11] 王威娜,支喜兰,毛雪松,等. 冻融循环作用下路基土回弹模量试验研究[J]. 冰川冻土,2010,32(5):955-959. Wang Weina, Zhi Xilan, Mao Xuesong,et al. Experimental Study of Resilience Modulus of Subgrade Soil Under Circles of Freezing and Thawing[J]. Journal of Glaciology and Geocryology, 2010,32(5):955-959.

[12] JTG E40-2007 公路土工试验规程[S]. 北京: 人民交通出版社, 2007. JTG E40-2007 Test Methods of Soils for Highway Engineering[S].Beijing: China Communications Press, 2007.

[13] 雷明轩. 季节性冰冻地区路基回弹模量试验研究[D].西安:长安大学, 2010: 11-24. Lei Mingxuan. Experimental Study on Modulus of Resilience of Subgrade in the Seasonal Freezing Region[D]. Xi'an:Chang'an University,2010: 11-24.

[14] 王书娟,陈志国,秦卫军,等. 季节性冰冻地区路基冻胀机理分析[J]. 公路交通科技, 2012, 29(7):20-24. Wang Shujuan, Chen Zhiguo, Qin Weijun, et al. Mechanism Analysis on Subgrade Frost Heaving in Seasonal Frozen Region[J]. Journal of Highway and Transportation Research and Development, 2012, 29(7):20-24.

[1] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[2] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798.
[3] 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192.
[4] 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251.
[5] 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893.
[6] 董德明, 曹珍, 闫征楚, 花修艺, 朱磊, 徐阳, 郭志勇, 梁大鹏. 臭氧-超声联用处理聚乙烯醇废水[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1191-1198.
[7] 刘雁, 刘吉平, 盛连喜. 吉林省西部湿地土地利用格局变化的多情景模拟[J]. 吉林大学学报(地球科学版), 2016, 46(3): 865-875.
[8] 李庆洋, 李振春, 黄建平, 李娜, 苏在荣. 基于贴体全交错网格的起伏地表正演模拟影响因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 920-929.
[9] 熊德明, 张明峰, 吴陈君, 妥进才. 基于模糊层次分析方法的泥质有效低熟气源岩评价[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1620-1630.
[10] 闫佰忠, 肖长来, 梁秀娟, 马喆, 危润初, 吴世利. 靖宇县玄武岩区矿泉水特征组分H2SiO3成因实验——以王大山泉为例[J]. 吉林大学学报(地球科学版), 2015, 45(3): 892-898.
[11] 聂立军, 于宏斌, 张建泽, 王聪, 李栋, 李阳. 吉林省下三叠统卢家屯组LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(2): 453-470.
[12] 张茜,梁秀娟,杜川. 基于无偏灰色马尔可夫链的吉林省降水量预测[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1973-1979.
[13] 陈勇,何中发,黎兵, 赵宝成. 崇明东滩潮沟发育特征及其影响因素定量分析[J]. 吉林大学学报(地球科学版), 2013, 43(1): 212-219.
[14] 曹阳,滕彦国,刘昀竺. 宁夏吴忠市金积水源地地下水水质影响因素的多元统计分析[J]. 吉林大学学报(地球科学版), 2013, 43(1): 235-244.
[15] 于晓飞,侯增谦,张晗,钱烨,李碧乐. 吉林永吉县大黑山斑岩型钼矿床成矿流体地球化学特征及成矿机制[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1688-1699.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!