吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 872-880.doi: 10.13278/j.cnki.jjuese.20170093

• 地球探测与信息技术 • 上一篇    下一篇

基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征

殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-09-07 出版日期:2018-05-26 发布日期:2018-05-26
  • 通讯作者: 杨志龙(1991-),男,硕士研究生,主要从事电磁三维正反演及应用研究,E-mail:zhilongyang_2015@163.com E-mail:zhilongyang_2015@163.com
  • 作者简介:殷长春(1965-),男,教授,国家"千人计划"特聘专家,主要从事电磁勘探理论,特别是航空和海洋电磁方面的研究,E-mail:yinchangchun@jlu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(41530320);国家自然科学青年基金项目(41404093);国家重点研发计划项目(2016YFC0303100,2017YFC0601903)

Characteristics of 3D DC Resistivity Response for Arbitrary Anisotropic Models Using Circular Scanning Measurement

Yin Changchun, Yang Zhilong, Liu Yunhe, Zhang Bo, Qi Yanfu, Cao Xiaoyue, Qiu Changkai, Cai Jing   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-07 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by Key Program of National Nature Science Foundation of China(41530320), China Natural Science Foundation for Young Scientists(41404093) and Key National Research Project of China(2016YFC0303100, 2017YFC0601903)

摘要: 高精度地下任意各向异性介质电性分布特征识别是当前的热门研究课题。本文以国内外前人工作为基础,基于非结构化网格,利用基于梯度恢复的后验误差估计指导网格自适应细化过程,实现了直流电阻率法三维有限元数值模拟。通过与一维模型半解析解的对比,验证了本文算法的有效性。考虑到电各向异性介质在观测中存在视电阻率反常现象,本文采用了环形扫面测量方法。通过对几种典型各向异性模型的模拟分析,得到了相应的各向异性影响规律和识别特征,各向异性主轴电阻率之间的比值大小决定了椭圆型视电阻率极性曲线长轴与短轴的比值大小,主轴电阻率的旋转方向会改变视电阻率极性曲线的形状。本文的算法研究及数值模拟技术可为直流电法数据精细处理和解释提供技术支撑。

关键词: 数值模拟, 非结构网格, 自适应有限元, 电各向异性, 环形扫面测量

Abstract: Modelling and identification of subsurface electrical anisotropy has always been a hot topic in the geophysical community. This paper presents a 3D anisotropic forward modelling algorithm using an adaptive finite-element method based on unstructured grids. Based on the existing research, we analyzed the typical anisotropic models, and studied the characteristics of the apparent resistivity related to the electrical anisotropic media and the identification of underground electrical anisotropy. Considering the existence of anisotropic paradox, we applied the circular direct current (DC) scanning measurement. The ratio of the principal resistivity affects the ratio of the major axis to the minor axis in the elliptical polar apparent resistivity curve, and the rotation direction of the principal resistivity changes the shape of the polar curve. The adaptive finite-element code is checked for accuracy against 1D semi-analytical solutions for an arbitrary anisotropic earth. The algorithm and results of our numerical experiments provide a technical support to the processing and interpretation of DC resistivity data.

Key words: numerical modelling, unstructured grids, adaptive finite-element method, electrical anisotropy, circular scanning measurement

中图分类号: 

  • P631.3
[1] 徐世浙,刘斌,阮百尧. 电阻率法中求解异常电位的有限单元法[J]. 地球物理学报, 1994, 37(2):511-515. Xu Shizhe, Liu Bin, Ruan Baiyao.The Finite Element Method for Solving Anomalous Potential for Resistivity Surveys[J]. Chinese Journal of Geophysics, 1994, 37(2):511-515.
[2] Pain C C, Herwanger J V, Saunders J H, et al. Anisotropic Resistivity Inversion[J]. Inverse Problems, 2003, 19(5):1081-1111.
[3] 刘斌,李术才,李树忱,等. 隧道含水构造电阻率法超前探测正演模拟与应用[J]. 吉林大学学报(地球科学版), 2012, 42(1):246-253. Liu Bin, Li Shucai, Li Shuchen, et al. Forward Modeling and Application of Electrical Resistivity Method for Detecting Water-Bearing Structure in Tunnel[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1):246-253.
[4] Yin C, Weidelt P. Geoelectrical Fields in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 1999, 64(2):426-434.
[5] 贲放,刘云鹤,黄威,等. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2):581-593. Ben Fang, Liu Yunhe, Huang Wei, et al. MCSEM Response for Anisotropic Media in Shallow Water[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2):581-593.
[6] Yin C. Geoelectrical Inversion for a One-Dimensional Anisotropic Model and Inherent Non-Uniqueness[J]. Geophysical Journal International, 2000, 140(1):11-23.
[7] Habberjam G. Apparent Resistivity, Anisotropy and Strike Measurements[J]. Geophysical Prospecting, 1975, 23(2):211-247.
[8] Li P, Uren N. Analytical Solution for the Point Source Potential in an Anisotropic 3-D Half-Space:I:Two-Horizontal-Layer Case[J]. Mathematical and Computer Modelling, 1997, 26(5):9-27.
[9] Yin C, Maurer H M. Electromagnetic Induction in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 2001, 66(5):1405-1416.
[10] Li P, Uren N. The Modelling of Direct Current Electric Potential in an Arbitrarily Anisotropic Half-Space Containing a Conductive 3-D Body[J]. Journal of Applied Geophysics, 1997, 38(1):57-76.
[11] Wang T, Fang S. 3-D Electromagnetic Anisotropy Modelling Using Finite Difference[J]. Geophysics, 2001, 66(5):1386-1398.
[12] Wang W, Wu X, Spitzer K. Three-Dimensional DC Anisotropic Resistivity Modelling Using Finite Elements on Unstructured Grids[J]. Geophysical Journal International, 2013, 193(2):734-746.
[13] Yin C, Zhang P, Cai J. Forward Modelling of Marine DC Resistivity Method for a Layered Anisotropic Earth[J]. Applied Geophysics, 2016, 13(2):279-287.
[14] Si H. A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator[D]. Berlin: Weierstrass Institute for Applied Analysis and Stochastic, 2006.
[15] 金建铭, 电磁场有限元法[M]. 西安:西安电子科技大学出版社, 2014. Jin Jianming. The Finite Element Method in Electromagnetics[M]. Xi'an:Xi'an University Press, 2014.
[16] Ren Z, Tang J. A Goal-Oriented Adaptive Finite-Element Approach for Multi-Electrode Resistivity System[J]. Geophysical Journal International, 2014, 199(1):136-145.
[17] 刘国兴. 电法勘探原理与方法[M]. 北京:地质出版社, 2005. Liu Guoxing. Principals and Methods of Electrical Prospecting[M]. Beijing:Geological Press, 2005.
[18] Zienkiewicz O C, Zhu J Z. Super-Convergent Patch Recovery and a Posteriori Error Estimates:Part1:The Recovery Technique[J]. Internatioanl Journal for Numerical Methods in Engineering, 1992, 33(7):1331-1364.
[19] 王飞燕. 基于非结构化网格的2.5-D直流电阻率法自适应有限元数值模拟[D]. 长沙:中南大学, 2009. Wang Feiyan. 2.5-D DC Resistivity Modeling by the Adaptive Finite-Element Method with Unstructured Triangulation[D]. Changsha:Central South University, 2009.
[20] Wait J R. Current Flow into a Three-Dimensionally Anisotropic Conductor[J]. Radio Science, 1990, 25(5):689-694.
[1] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[2] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[3] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[4] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[5] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[6] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[7] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[8] 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219.
[9] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[10] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
[11] 张剑波, 李谢清, 石阳, 朱建勃. 油藏数值模拟中地质模型的建模流程与方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 860-868.
[12] 束龙仓, 范建辉, 鲁程鹏, 张春艳, 唐然. 裂隙-管道介质泉流域水文地质模拟试验[J]. 吉林大学学报(地球科学版), 2015, 45(3): 908-917.
[13] 杨丽春, 庞宇斌, 李慎刚. 超长基坑开挖的空间效应[J]. 吉林大学学报(地球科学版), 2015, 45(2): 541-545.
[14] 雷宏武, 李佳琦, 许天福, 王福刚. 鄂尔多斯盆地深部咸水层二氧化碳地质储存热-水动力-力学(THM)耦合过程数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(2): 552-563.
[15] 杜超, 肖长来, 吕军, 田浩然. 地下水水质实时预报系统开发及应用:以下辽河平原为例[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1625-1632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!