吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1672-1679.doi: 10.13278/j.cnki.jjuese.20180194

• 地质工程与环境工程 • 上一篇    下一篇

基于LAHARZ的泥石流堆积范围预测模型的建立及应用

王常明, 李桐, 田书文, 李硕   

  1. 吉林大学建设工程学院, 长春 130026
  • 收稿日期:2018-07-18 发布日期:2019-11-30
  • 作者简介:王常明(1966-),男,教授,博士生导师,主要从事岩土力学方面的教学和研究工作,E-mail:wangcm@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41572257)

Establishment and Application of Prediction Model for Debris Flow Accumulation Area Based on LAHARZ

Wang Changming, Li Tong, Tian Shuwen, Li Shuo   

  1. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2018-07-18 Published:2019-11-30
  • Supported by:
    Supported by National Natural Science Foundation of China (41572257)

摘要: 为了探究泥石流的堆积范围,利用LAHARZ软件,对北京市密云县泥石流沟喇嘛栅子南沟进行了数值模拟。结合泥石流沟小流域1:10 000数字高程模型图,模拟了泥石流的堆积范围。首先利用中国部分地区泥石流体积和堆积范围的数据资料,获得了泥石流体体积与其堆积范围的新的统计模型B=11.42V0.7156;然后通过模拟沟道与实际沟道的对比,确定了最佳沟道阈值为15 000;再结合现场调查统计和降雨历史资料,确定了10年、20年、50年和100年一遇暴雨条件的泥石流体积值,分别为56 500、72 900、94 200和113 100 m3;最后在此基础上对该条泥石流沟的堆积范围进行了预测。结果表明,100年一遇的暴雨条件下泥石流堆积面积为48 729 m2,到达最远距离约为490 m,已影响下游村庄。

关键词: 泥石流, LAHARZ, 数值模拟, 堆积范围

Abstract: In order to explore the accumulation range of debris flow, a numerical simulation of the Lamazhazi debris flow in Miyun County, Beijing was carried out by using the LAHARZ software combined with the 1:10 000 DEM map of the small drainage basin. The authors utilized the data of volume and accumulation area of debris flow in some areas of China, and obtained a new statistical model for debris flow volume and its accumulation area. The optimal river threshold was determined to be 15 000 through comparing the simulated river channel with the actual river channel; combined with the on-site survey statistical and rainfall historical data, the debris flow volume thresholds for 10, 20, 50, and 100 years under heavy rain were determined to be 56 500, 72 900, 94 200, and 113 100 m3, respectively. The corresponding accumulation area of the debris flow trench is predicted as follows:the area of the debris flow under the condition of once-in-a-century rainstorm is 48 729 m2, and the longest distance is about 490 m, which has an impact on the downstream villages.

Key words: debris flow, LAHARZ, numerical simulation, accumulation area

中图分类号: 

  • P642.23
[1] 唐邦兴.中国泥石流[M].北京:商务印书馆,2000. Tang Bangxing. Debris Flow in China.[M].Beijing:Commercial Press,2000.
[2] 水山高久,北原一平.土石流泛滥夕三口卜夕日夕毛于沙上为土石流对策的效果评价[J].新砂防,1989,40(5):14-21. Takahisa Mizuyama, Ippei Kitahara. Effectiveness Evaluation of Countermeasures for Debris Flow on Sandy Soil[J]. New Sand Protection, 1989,40(5):14-21.
[3] 刘希林,唐川,陈明,等.泥石流危险范围的模型实验预测法[J].自然灾害学报,1993(3):67-73. Liu Xilin, Tang Chuan, Chen Ming,et al. Model Experimental Prediction Method for Debris Flow Hazard Range[J]. Journal of Natural Disasters, 1993(3):67-73.
[4] O'Brien J S, Julian P Y, Fullerton W T. Two-Dimensional Water Flood and Mudflow Simulation[J]. Journal of Hydraulic Engineering, 1993, 119(2):244-261.
[5] Patra A K,Bauer A C,Nichita C C,et al.Parallel Adaptive Numerical Simulation of Dry Avalanches over Natural Terrain[J].Journal of Volcanology and Geothermal Research,2005,139:1-21
[6] Iverson R M,Denlinger R P. Flow of Variably Fluidized Granular Masses Across Three-Dimensional Terrain:1:Coulomb Mixture Theory[J].Journal of Geophysical Research,2001,106(B1):537-552.
[7] Denlinger R P,Iverson R M. Flow of Variably Fluidized Granular Masses Across Three-Dimensional Terrain:2:Numerical Predictions and Experimental Tests[J]. Journal of Geophysical Research,2001, 106(B1):553-566.
[8] 余斌.美国纽约州立大学布法罗分校火山碎屑流和泥石流数学模型研究近况[J].山地学报,2005,23(1):126-128. Yu Bin.Research on the Numerical Model of Pyroclastic Flow and Debris Flow in the State University of New York at Buffalo[J].Mountain Research,2005,23(1):126-128.
[9] Han G, Wang D. Numerical Modeling of Anhui Debris Flow[J]. Journal of Hydraulic Engineering, 1996, 122(5):262-265.
[10] Iverson R M, Schilling S P, Vallance J W. Objective Delineation of Lahar-Inundation Hazard Zones[J]. Geological Society of America Bulletin, 1998, 110(8):972-984.
[11] Griswold J P, Iverson R M. Mobility Statistics and Automated Hazard Mapping for Debris Flows and Rock Avalanches[M].[S.l.]:US Department of the Interior, US Geological Survey, 2008.
[12] Savage S B, Hutter K. The Motion of A Finite Mass of Granular Material Down a Rough Incline[J]. Journal of Fluid Mechanics, 1989,199:177-215.
[13] Pierson, Thomas C, Thoure J C, et al. Perturbation and Melting of Snow and Ice by the 13 November 1985 Eruption of Nevado del Ruiz, Colombia, and Consequent Mobilization, Flow and Deposition of Lahars[J]. Journal of Volcanology and Geothermal Research, 1990, 41(1/2/3/4):17-66.
[14] Scott K M, Vallance J W. Debris Flow, Debris Avalanche and Flood Hazards at and Downstream from Mount Rainier, Washington[J].Hydrologic Atlas.doi.org/10.3133/ha729.
[15] 燕继宇. 内蒙克旗泥石流堆积区平面形态和危险范围预测模型[D]. 长春:吉林大学,2015. Yan Jiyu. The Study of Flat Shape of Alluvial Fans and the Model for Predicting Deposition of Debris Flow in Inner Mongolia[D]. Changchun:Jilin University,2015.
[16] Li Yaoming, Ma Chao, Wang Yujie. Landslides and Debris Flows Caused by an Extreme Rainstorm on 21 July 2012 in Mountains near Beijing, China[J]. Bulletin of Engineering Geology and the Environment, 2019,78:1265-1280.
[17] 王松桂. 线性模型引论[M]. 北京:科学出版社, 2004. Wang Songgui. Introduction to Linear Model[M]. Beijing:Science Press, 2004.
[18] 陈剑平,王常明,张文,等. 北京泥石流灾害预测预警[R].长春:吉林大学,2016. Chen Jianping, Wang Changming, Zhang Wen,et al. Debris Flow Disaster Prediction and Early Warning System in Beijing[R]. Changchun:Jilin University,2016.
[19] O'Callaghan J F, Mark D M. The Extraction of Drainage Networks from Digital Elevation Data[J]. Computer Vision,Graphics, and Image Processing, 1984, 28(3):323-344.
[20] 赵志新,高振宇,杜文成,等.北京市水文手册[M].北京:北京市水务局,2005. Zhao Zhixin, Gao Zhenyu, Du Wencheng, et al. Beijing Hydrological Manual[M]. Beijing:Beijing Water Bureau,2005.
[1] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[2] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[3] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[4] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[5] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[6] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[7] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[8] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[9] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[10] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[11] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[12] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[13] 宋志, 邓荣贵, 陈泽硕, 冯伟. 磨西河泥石流堵断大渡河物理模拟与早期识别[J]. 吉林大学学报(地球科学版), 2017, 47(1): 163-170.
[14] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[15] 王常明, 田书文, 王翊虹, 阮云凯, 丁桂伶. 泥石流危险性评价:模糊c均值聚类-支持向量机法[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1168-1175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钦丽娟,曹剑峰,平建华,姜纪沂,王 楠,沈媛媛,李 升. 模糊数学在郑州市水资源价值评价中的应用[J]. J4, 2005, 35(04): 487 -0490 .
[2] 李绪谦,商书波,林亚菊,周洪义,侯 戈. 石油类污染物在包气带土层中的水化学迁移率测定[J]. J4, 2005, 35(04): 501 -0504 .
[3] 胡艳飞,赵雪平,秦树洪. 复杂策动力项对Duffing方程混沌系统相态的影响[J]. J4, 2005, 35(06): 801 -0805 .
[4] 李向民,夏林圻,夏祖春,徐学义,马中平,王立社. 东天山石炭纪企鹅山群火山岩岩石成因[J]. J4, 2006, 36(03): 336 -341 .
[5] 初凤友,胡大千,姚杰. 中太平洋YJB海山富钴结核矿物组成与元素地球化学[J]. J4, 2007, 37(1): 8 -0014 .
[6] 杨 昊,孙建国,韩复兴. 波前扩展有限差分地震波走时算法的C++语言描述[J]. J4, 2007, 37(3): 615 -0619 .
[7] 刘正宏,徐仲元,杨振升,陈晓峰. 变质构造岩类型及其特征[J]. J4, 2007, 37(1): 24 -0030 .
[8] 胡建武,陈建平,朱鹏飞. 基于证据权重法的中下扬子北缘下古生界油气地质异常[J]. J4, 2007, 37(3): 458 -0462 .
[9] 丁日新,舒 萍,纪学雁,曲延明,程日辉,张 斌. 松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义[J]. J4, 2007, 37(3): 525 -0530 .
[10] 董 军,张 晶,赵勇胜,张伟红,吕爱民,韩 融,刘莹莹,李志斌. 渗滤液污染物在地下环境中的生物地球化学作用[J]. J4, 2007, 37(3): 587 -0591 .