吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (2): 356-367.doi: 10.13278/j.cnki.jjuese.20190288

• 油页岩成矿与资源评价 • 上一篇    下一篇

茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境

孟庆涛1,2, 李金国1,2, 刘招君1,2, 胡菲1,2, 徐川1,2   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 吉林省油页岩与共生能源矿产重点实验室, 长春 130061
  • 收稿日期:2019-12-19 出版日期:2020-03-26 发布日期:2020-03-31
  • 作者简介:孟庆涛(1984-),女,教授,博士生导师,主要从事石油地质学、地球化学和非常规油气资源评价和成矿(藏)理论研究,E-mail:mengqt@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41872103);“十三五”规划项目(2017YQZYPJ1915)

Organic Geochemical Characteristics and Depositional Environment of Oil Shale of Eocene of Paleocene Youganwo Formation in Yangjiao Mining Area of Maoming Basin

Meng Qingtao1,2, Li Jinguo1,2, Liu Zhaojun1,2, Hu Fei1,2, Xu Chuan1,2   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Key Lab of Oil Shale and Coexistent Energy Minerals of Jilin Provice, Changchun 130061, China
  • Received:2019-12-19 Online:2020-03-26 Published:2020-03-31
  • Supported by:
    Supported by National Natural Science Foundation of China (41872103) and Project During the "13th Five-Year Plan" Period (2017YQZYPJ1915)

摘要: 针对茂名盆地油页岩成矿机理问题,利用茂名盆地羊角含矿区始新统油柑窝组油页岩莱科(Leco)、热解、含油率以及生物标志化合物等分析,研究了其有机地球化学特征,讨论了油页岩有机质来源与沉积环境。结果表明:油柑窝组油页岩有机质丰度高,有机质类型为Ⅰ-Ⅱ1型,含油率平均为5.98%,属品质中等偏好型;碳优势指数(ICP)值(3.73~4.37)、奇偶优势(OEP)值(7.59~9.57)、较小甾烷C29ααα20S/(20S+20R)、较低Ts/(Ts+Tm)以及最高热解峰温(Tmax)值(428.00~434.00℃)均指示油柑窝组油页岩热演化处于未成熟阶段。正构烷烃气相色谱(GC)图显示为单峰式,主碳峰为C27;∑C21-/∑C22+与∑C21+22/∑C28+29均呈现低值,ICP与OEP呈现高值,高碳数藿烷系列含量丰富,三环萜烷含量较低,未检测出奥利烷和羽扇烷等非藿类化合物,综合C27-C28-C29规则甾烷相对含量特征,确定油柑窝组油页岩有机质来源主要为湖相藻类体以及细菌、浮游生物与陆生植物混合来源。总有机碳质量分数/全硫质量分数(TOC/S)值(41.14~170.08)、姥鲛烷/植烷(Pr/Ph)值(0.82~1.30)以及重排甾烷/规则甾烷值(0.06~1.10)指示油页岩沉积时水体为淡水、还原环境。在亚热带—温带温暖-湿润气候背景下,藻类等水生生物勃发引起的高湖泊生产力和淡水、还原环境是茂名盆地油柑窝组油页岩成矿的有利条件。

关键词: 油页岩, 有机地球化学, 有机质来源, 沉积环境, 油柑窝组, 茂名盆地

Abstract: In view of the forming mechanism of oil shale in Maoming basin, the authors studied the organic geochemical characteristics, and discussed the origin of organic matters and depositional environment of Eocene Youganwo Formation oil shale in Yangjiao mining area based on Leco, rock pyrolysis, oil yield, and biomarker analysis. The results show that the abundance of organic matter is high, the kerogen is type Ⅰ-Ⅱ1, the average oil yield is 5.98%, and the quality of oil shale is fairly high. ICP (3.73-4.37), OEP (7.59-9.57), low C29ααα20S/(20S+20R), low Ts/(Ts+Tm),and Tmax (428-434℃) indicate that the oil shale thermal evolution of Youganwo Formation is in immature stage. The gas chromatography (GC) of n-alkanes has the features of unimodal distributions with nC27 as the mean peak. ∑C21-/∑C22+ and ∑C21+22/∑C28+29 are low, ICP and OEP are high. The content of high-carbon hopanes is high,while the content of tricyclic terpenes is low. No non-hoprii compounds such as oleane and lupane are detected. Combined with the relative content of C27-C28-C29,all the above indicate that lacustrine algae, mixed sources of plankton and terrestrial plants are the main source of organic matter of the oil shale of Youganwo Formation. TOC/S (41.14-170.08), Pr/Ph (0.82-1.30), and rearranged sterane/sterane (0.06-1.10) indicate that the paleo-lake condition was fresh and reductive when oil shale deposited. In a subtropical-temperate warm-humid climate, high lake productivity is caused by aquatic organisms such as algae bloom, and reductive fresh water environment is favorable for oil shale mineralization in Youganwo Formation of Maoming basin.

Key words: oil shale, organic geochemistry, origin of organic matters, depositional environment, Youganwo Formation, Maoming basin

中图分类号: 

  • P618.12
[1] 刘招君,杨虎林,董清水,等. 中国油页岩[M]. 北京:石油工业出版社,2009:1-116. Liu Zhaojun, Yang Hulin, Dong Qingshui, et al. Oil Shale in China[M]. Beijing:Petroleum Industry Press, 2009:1-116.
[2] 张长年,罗铸金,郭绣云. 有机地球化学概论[M]. 北京:地质出版社,1993:1-90. Zhang Changnian, Luo Zhujin, Guo Xiuyun. Introduction to Organic Geochemistry[M]. Beijing:Geology Press, 1993:1-90.
[3] 柳广弟,张厚福. 石油地质学[M]. 北京:石油工业出版社,2009:115-266. Liu Guangdi, Zhang Houfu. Petroleum Geology[M]. Beijing:Petroleum Industry Press, 2009:115-266.
[4] 陈立雷,刘健,王家生. 有机地球化学在东海全新世古气候和古海洋研究中的应用进展[J]. 海洋环境科学,2019,38(3):454-463. Chen Lilei, Liu Jian, Wang Jiasheng.Application of Organic Geochemical Proxies to Holocene Paleoclimate and Paleooceanography Studies of the East China Sea[J]. Marine Environmental Science,2019,38(3):454-463.
[5] 刘招君,孟庆涛,柳蓉,等.古湖泊学研究:以桦甸断陷盆地为例[J].沉积学报,2010,28(5):917-925. Liu Zhaojun, Meng Qingtao, Liu Rong, et al. Paleolimnology Study:Taking Huadian Fault Basin as an Example[J]. Acta Sedimentologica Sinica, 2010,28(5):917-925.
[6] Sun P, Sachsenhofer R F, Liu Z, et al. Organic Matter Accumulation in the Oil Shale-Bearing and Coal-Bearing Huadian Basin (Eocene; NE China)[J]. International Journal of Coal Geology, 2013, 105:1-15.
[7] 卢双舫,张敏,钟宁宁. 油气地球化学[M]. 北京:石油工业出版社,2008:1-158. Lu Shuangfang, Zhang Min, Zhong Ningning.Oil and Gas Geochemistry[M]. Beijing:Petroleum Industry Press, 2008:1-158.
[8] 郭敏. 茂名盆地油页岩特征及控矿因素[D]. 长春:吉林大学,2007. Guo Min. Characteristics and Mineralization Controlling Factors of Oil Shale in Maoming Basin[D]. Changchun:Jilin University, 2007.
[9] 严焕榕,朱建伟,李殿超,等.茂名盆地金塘矿区油页岩特征及形成条件[J].世界地质,2006,25(4):407-410. Yan Huanrong, Zhu Jianwei, Li Dianchao, et al.Jintang Oil Shale Resources in Maoming Basin and Its Forming Conditions[J]. Global Geology, 2006, 25(4):407-410.
[10] 周圆圆,邱楠生,腾格尔,等.茂名油柑窝组油页岩元素地球化学特征及其地质意义[J].矿物岩石地球化学通报,2016,35(6):1270-1279. Zhou Yuanyuan,Qiu Nansheng, Tengger, et al. Geochemical Characteristics and the Geological Significance of Oil Shales from the Youganwo Formation, Maoming Basin, China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2016,35(6):1270-1279.
[11] 秦匡宗.抚顺和茂名油页岩的有机质含量及其元素组成[J].华东石油学院学报,1982(2):71-79. Qin Kuangzong. Organic Matter Content and Elemental Composition of Oil Shale in Fushun and Maoming Basin[J]. Journal of East China Petroleum University, 1982(2):71-79.
[12] 王剑秋,邬立言,钱家麟.应用岩石评价仪进行生油岩热解生烃动力学的研究[J].华东石油学院学报,1984(1):56-64. Wang Jianqiu, Wu Liyan, Qian Jialin. Study on Hydrocarbon-Generation Kinetics by Pyrolysis of Source Rocks Using Rock Evaluation Instrument[J]. Journal of East China Petroleum University, 1984(1):56-64.
[13] 傅家谟,徐芬芳,陈德玉,等.茂名油页岩中生物输入的标志化合物[J].地球化学,1985(2):99-114. Fu Jiamo, Xu Fenfang, Chen Deyu, et al. Biomarkers Bioinput from Maoming Oil Shale[J]. Journal of Geochemistry, 1985(2):99-114.
[14] 余金凤,吴作基.广东茂名盆地茂五井的孢粉组合及其地质时代的探讨[J].地层学杂志,1983,7(2):112-118. Yu Jinfeng, Wu Zuoji. Palynological Assemblages and Geological Time in Maoming Basin, Guangdong Province[J]. Journal of Stratigraphy, 1983, 7(2):112-118.
[15] 徐川. 茂名盆地古近系油柑窝组油页岩地球化学特征及有机质聚集条件[D].长春:吉林大学,2018. Xu Chuan. Geochemical Characteristics of Oil Shale in Youganwo Formation and Its Aggregations Factors of Organic Matter, Maoming Basin[D]. Changchun:Jilin University, 2018.
[16] 叶国杨.广东省茂名盆地形成机制探讨[J].西部探矿工程,2008(7):141-144. Ye Guoyang. Discussion on Formation Mechanism of Maoming Basin, Guangdong Province[J]. Western Exploration Project, 2008(7):141-144.
[17] 王志勇,孟仟祥,王作栋,等.吐哈盆地台北凹陷侏罗系煤系源岩地球化学分类及意义[J].沉积学报,2010,28(6):1238-1243. Wang Zhiyong, Meng Qianxiang, Wang Zuodong, et al. Geochemical Classification and Significance of Jurassic Coal-Bearing Source Rocks in Taibei Depression, Turpan-Hami Basin[J]. Acta Sedimentologica Sinica, 2010, 28(6):1238-1243.
[18] 王静彬,高志前,康志宏,等.塔里木盆地塔西南坳陷和田凹陷普司格组烃源岩沉积环境及有机地球化学特征[J].天然气地球科学,2017,28(11):1723-1734. Wang Jingbin, Gao Zhiqian, Kang Zhihong, et al. The Sedimentary Environment and Geochemical Characteristics of Source Rocks in the Pusige Formation in the Hetian Sag, Southwestern Tarim Basin, China[J]. Natural Gas Geoscience, 2017, 28(11):1723-1734.
[19] 倪春华,周小进,王果寿,等.鄂尔多斯盆地南缘平凉组烃源岩沉积环境与地球化学特征[J].石油与天然气地质,2011,32(1):38-46. Ni Chunhua, Zhou Xiaojin, Wang Guoshou, et al. Sedimentary Environment and Geochemical Characteristics of Hydrocarbon Source Rocks in Pingliang Formation, Southern Margin of Ordos Basin[J]. Oil & Gas Geology, 2011, 32(1):38-46.
[20] 张小龙,李艳芳,吕海刚,等.四川盆地志留系龙马溪组有机质特征与沉积环境的关系[J].煤炭学报,2013,38(5):851-856. Zhang Xiaolong, Li Yanfang, Lü Haigang, et al. Relationship Between Organic Matter Characteristics and Depositional Environment in the Silurian Longmaxi Formation in Sichuan Basin[J]. Journal of China Coal Society, 2013, 38(5):851-856.
[21] Seifert W K, Moldowan J M. Applicantions of Steranes, Terpanes and Monoaromatics to the Maturation, Migration and Source of Crude Oils[J]. Geochim Cosmochim Acta, 1978, 42(1):77-95.
[22] Peters K E, Walters C C, Moldowan J M. The Biomarker Guide:Biomarkers and Isotopes in the Environment and Human History[M]. Cambridge:Cambridge University Press, 2005.
[23] 许涛. 不同环境样品生物标志化合物的气候环境意义[D]. 兰州:兰州大学,2008. Xu Tao. Characteristics of Biomarkers in Secleted Samples from Different Environments:Their Implications for Climatic and Environmental Variations[D]. Lanzhou:Lanzhou University, 2008.
[24] Mukhopadhyay P K, Wade J A,Kruge M A, et al. Organic Facies and Maturation of Jurassic/Cretaceous Rocks, and Possible Oil-Source Rock Corelation Based on Pyrolysis of Asphaltenes, Scotion Basin, Canada[J]. Organic Geochemistry, 1995, 22:85-104.
[25] 李艳. 辽西下白垩统义县组沉积有机质单体烃碳-氢同位素组成及剖面变化的生源与古气候环境意义[D]. 广州:中国科学院研究生院(广州地球化学研究所),2016. Li Yan. The Source and Paleoclimate/Environmental Significance of Carbon/Hydrogen Isotopic Composition of Individual Hydrocarbon Compounds and Their Profile Variation in the Lower Cretaceous Yixian Formation Sediments of Western Liaoning Province, China[D]. Guangzhou:Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2016.
[26] 张成艳,成小英,董海良,等. 库赛湖沉积物中正构烷烃的分布特征及古环境意义[J]. 地质科技情报,2015,34(1):72-77. Zhang Chengyan, Cheng Xiaoying, Dong Hailiang, et al. Distribution of N-Alkanes in Sediments Core and Implications of Paleoenvironmental of Kousai Lake[J]. Geological Science and Technology Information, 2015, 34(1):72-77.
[27] Han J, Calvin M. Hydrocarbon Distribution of Algae and Bacteria, and Microbiological Activity in Sediments[J]. Proceedings of the National Academy of Science, 1969, 64(2):436-443.
[28] Ficken K J, Li B, Swain D L, et al. An N-Alkane Proxy for the Sedimentary Input of Submerged/Floating Freshwater Aquatic Macrophytes[J]. Organic Geocheemistry, 2000, 31(7/8):745-749.
[29] Gelpi V, Schneider H, Mann J, et al. Hydrocarbon of Geochemical Significance in Microscopic Algae[J]. Phytochenistry, 1970, 9:603-612.
[30] Moldowan J M, Seifert W K, Gallegos E J. Relationship Between Petroleum Composition and Depositional Environment of Petroleum Source Rocks[J]. American Sssociation of Petroleum Geologists Bulletin, 1985, 69:1255-1268.
[31] Weete J D. Chemistry and Biochemistry of Natural Waxes[M]. Amsterdam:Elsevier, 1976:349-418.
[32] Huang Y, Bol R, Harkness D D, et al. Post-Glacial Variations in Distributions, 13C and 14C Contents of Aliphatic Hydrocarbons and Bulk Organic Matter in Three Types of British Acid Upland Soils[J]. Organic Geochemistry, 1996, 24(3):273-287.
[33] 欧杰,王延华,杨浩,等.湖泊沉积物中正构烷烃和碳同位素的分布特征及其环境意义[J]. 南京师大学报(自然科学版),2012, 35(3):98-105. Ou Jie, Wang Yanhua, Yang Hao, et al. Distribution Characteristics of N-Alkanes and δ13C in the Lake Sediments and Their Environmental Significance[J]. Journal of Nanjing Normal University (Natural Science Edition), 2012, 35(3):98-105.
[34] Albro P W. Chemistry and Biochemistry of Natural Waxes[M]. Amsterdam:Elsevier, 1976:419-445.
[35] 龚建明,张莉,陈小慧,等.青藏高原乌丽冻土区过成熟烃源岩原始有机质类型讨论[J].西北地质,2014,47(2):208-215. Gong Jianming, Zhang Li, Chen Xiaohui, et al. Discussion on Original Organic Types of Over-Mature Source Rocks in Wuli Permafrost Zone of Qinghai-Tibeatean Plateau[J]. Northwest Geology, 2014, 47(2):208-215.
[36] 孔鹏飞,张敏. 长岭地区东岭断陷双101井火石岭组烃源岩地球化学特征研究[J]. 长江大学学报(自然科学版),2012,9(5):33-37. Kong Pengfei, Zhang Min. Geochemical Characteristics of Hydrocarbon Source Rocks in Shuoshiling Formation, Shuang101, Dongling Fault Depression, Changling Area[J]. Journal of Yangtze University (Natural Science Edition), 2012, 9(5):33-37.
[37] 袁际华,柳广弟.苏北盆地泰州组原油有机地球化学特征及成因[J]. 西南石油大学学报,2007,29(6):34-38. Yuan Jihua, Liu Guangdi. Organic Geochemical Characteristics and Genesis of Crude Oil from Taizhou Formation, Subei Basin[J]. Journal of Southwest Petroleum University, 2007, 29(6):34-38.
[38] 曾文人,孟庆涛,刘招君,等. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J].吉林大学学报(地球科学版),2019,49(5):1270-1284. Zeng Wenren, Meng Qingtao, Liu Zhaojun, et al.Organic Geochemical Characteristics and Paleo-Lake Conditions of Oil Shale of Middle Jurassic Shimengou Formation in Tuanyushan Area of Northern Qaidam Basin[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5):1270-1284.
[39] 屈定创,史继扬,向明菊. 一类新的藿烯化合物的发现及其在地质藿类成因上的意义[J]. 中国科学:B辑,1995,25(6):665-672. Qu Dingchuang, Shi Jiyang, Xiang Mingju. The Discovery of a New Hopene Compounds and Its Significance of Geological Theory of Hopan Origin[J]. Science China:Series B, 1995, 25(6):665-672.
[40] 李可为,潘贤庄. 崖13-1气田凝析油和煤系地层的双杜松烷及其地质-地球化学意义[J].中国海上油气,1990,4(1):33-42. Li Kewei, Pan Xianzhuang. Digin-Alkane and Its Geological-Geochemical Significance in Condensate and Coal-Measure Strata of the Ya13-1 Gas Field[J]. China Offshore Oil & Gas, 1990, 4(1):33-42.
[41] Berner R A, Raiswell R. Burial of Organic Carbon and Pyrite Sulfur in Sediments over Phanerozoic Time:A New Theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5):855-862.
[42] 刘冬青,柳蓉,刘招君,等. 罗子沟盆地大砬子组油页岩有机地球化学特征及其地质意义[J]. 世界地质,2012, 31(2):315-322. Liu Dongqing, Liu Rong, Liu Zhaojun, et al. Organic Geochemical Characteristics and Geological Significance of Oil Shale in Dalazi Formation of Luozigou Basin[J]. Global Geology, 2012, 31(2):315-322.
[43] Ten Haven H L, de Leeuw J W, Peakman T M, et al. Anomalies in Steroid and Hopanoid Maturity Indices[J]. Geochimica et Cosmochimica Acta, 1986, 50(5):853-855.
[44] 潘志清,黄第藩,林壬子. 原油和生油岩中完整短链甾类系列化合物(C20-C26)的发现及其意义[J]. 沉积学报,1991,9(2):106-113. Pan Zhiqing, Huang Difan, Lin Renzi.Discovery and Significance of Complete Short-Chain Steroids (C20-C26) in Crude Oil and Source Rocks[J]. Acta Sedimentologica Sinica, 1991, 9(2):106-113.
[45] 林金辉,伊海生,李勇,等. 藏北高原双湖地区中侏罗统海相油页岩生物标志化合物分布特征及其意义[J]. 沉积学报,2001,19(2):287-292. Lin Jinhui, Yi Haisheng, Li Yong, et al. Characteristics of Biomarker Compounds and Its Implication of Middle Jurassic Oil Shale Sequence in Shuanghu Area, Northern Tibet Plateau[J]. Acta Sedibilica Sinica, 2001, 19(2):287-292.
[46] Didyk B M, Simoneit B R T, Brassell S C, et al. Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation[J]. Nature, 1978, 272:216-222.
[1] 刘招君, 柳蓉, 孙平昌, 孟庆涛, 胡菲. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325.
[2] 王嗣敏, 臧东升, 王熙琼, 李杰, 韩嵩, 李建中. 辽西建昌盆地油页岩发育特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 326-340.
[3] 贾建亮, 刘招君, 孟庆涛, 孙平昌, 徐进军, 柳蓉, 白悦悦. 中国陆相油页岩含油率与总有机碳的响应机理[J]. 吉林大学学报(地球科学版), 2020, 50(2): 368-377.
[4] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
[5] 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50(2): 392-404.
[6] 董清水, 何春生, 楼仁兴, 任锡钢, 张超, 张渝金, 许圣传. 大兴安岭南段阿鲁科尔沁旗地区林西组沉积环境特征及其时限的地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 425-441.
[7] 易海永, 崔宝琛, 王瑶琳, 邱玉超, 徐胜林, 李乾. 四川盆地广安地区中二叠统栖霞组岩石特征与沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 454-464.
[8] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[9] 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284.
[10] 陈庆松, 杨润柏, 刘德民, 陶兰初. 滇东北会泽灯影组硅质岩成因及沉积环境——来自岩石学和地球化学证据[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1327-1337.
[11] 曾忠诚, 边小卫, 张若愚, 孔文年, 陈宁, 赵端昌, 赵江林. 西昆仑塔什库尔干下-中侏罗统龙山组沉积构造背景分析[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1039-1052.
[12] 马中良, 王强, 郑伦举, 张彩明. 油页岩原位开采温度-时间-转化率判识方法及应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 394-399.
[13] 高小惠, 张训华, 蔡来星, 郭兴伟, 李文强. 南黄海盆地中部隆起CSDP-2井志留系-石炭系岩石学特征及其沉积相[J]. 吉林大学学报(地球科学版), 2019, 49(1): 53-64.
[14] 史冀忠, 卢进才, 魏建设, 牛亚卓, 韩小锋, 张宇轩. 内蒙古阿拉善右旗雅干地区二叠系埋汗哈达组硅质岩成因及其沉积环境[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1711-1724.
[15] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!