吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1628-1638.doi: 10.13278/j.cnki.jjuese.20190082

• 地质与资源 • 上一篇    

下刚果盆地白垩系盐构造的形成演化

李一赫1, 王殿举2,3, 于法浩4, 刘志强5   

  1. 1. 山西大同大学建筑与测绘工程学院, 山西 大同 037003;
    2. 北京大学地球与空间科学学院, 北京 100871;
    3. 北京大学石油与天然气研究中心, 北京 100871;
    4. 中海石油天津分公司渤海石油研究院, 天津 300452;
    5. 中国石化石油勘探开发研究院, 北京 100083
  • 收稿日期:2019-04-12 发布日期:2020-12-11
  • 通讯作者: 王殿举(1989-),男,博士研究生,主要从事构造地质方面的研究,E-mail:djwang2015@pku.edu.cn E-mail:djwang2015@pku.edu.cn
  • 作者简介:李一赫(1988-),女,讲师,主要从事含油气盆地构造方面的研究,E-mail:chichiyimuzi@126.com
  • 基金资助:
    中石化科技部项目(P18090-2)

Formation and Evolution of Cretaceous Salt Structures in Lower Congo Basin

Li Yihe1, Wang Dianju2,3, Yu Fahao4, Liu Zhiqiang5   

  1. 1. College of Architecture and Surveying Engineering, Shanxi Datong University, Datong 037003, Shanxi, China;
    2. School of Earth and Space Sciences, Peking University, Beijing 100871, China;
    3. Institute of Oil and Gas, Peking University, Beijing 100871, China;
    4. Bohai Oilfield Research Institute of CNOOC Ltd., Tianjin 300452, China;
    5. Sinopec Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2019-04-12 Published:2020-12-11
  • Supported by:
    Supported by Ministry of Science and Technology Project of Sinopec (P18090-2)

摘要: 下刚果盆地具有巨大的油气资源和潜力,盐构造控制着油气成藏和分布。其盐岩流动的不规律性,增加了盐构造的形成演化和演化期次分析的难度,前人主要通过平衡剖面恢复的方法对断裂等构造形态进行定量恢复,但对盐构造形成演化过程的认识及变形期次刻画的准确性明显不足。本文基于数值模拟手段,通过沉积地层的分时期加载方法,正演了下刚果盆地的构造演化过程,探讨并明确了盐构造的演化阶段。数值模拟结果表明,下刚果盆地盐构造的形成主要分为3个阶段:盐岩初始流动阶段、盐构造形成阶段和构造稳定阶段。形成底辟构造的主要时期是古新世-中新世。其中,古新世-渐新世开始形成底辟构造,中新世多个大规模底辟构造形成,且该时期是盐构造活动最强烈时期。在此基础上进一步完成了下刚果盆地盐构造活动变形与重力作用流动、上覆沉积地层厚度不均一以及沉积扇体的进积作用关系分析。

关键词: 下刚果盆地, 数值模拟, 盐构造, 构造演化

Abstract: The Lower Congo basin contains a large amount of oil and gas resources, and the salt structure controls the hydrocarbon accumulation and distribution. The flow of salt rocks is irregular, therefore, it is difficult to analyze the formation and evolution of the salt structures. The former studies of the basin tectonic evolution by means of balanced sections method cannot accurately describe the formation and evolution of the salt structures in different ages. The flow of salt rock and the deformation of salt structures in the Lower Congo basin is not clear. A discrete element numerical simulation experiment was carried out, and the method of phased loading of sedimentary strata was adopted. The results are consistent with the geological conditions of the Lower Congo basin and the existing geological understanding of the basin. The results show that the formation process of the salt structure in the Lower Congo basin is mainly divided into three stages:The initial flow stage, the formation stage, and the stable stage. The main period of formation of the salt diapir structure is the Paleocene-Miocene. In the Paleocene-Oligocene period, the salt diapir structure began to form. During the Miocene period, the salt diapir structure was obvious in quantity and scale, and the Miocene was the most intensive period of salt tectonic activity. Compared with the previous research results, the main evolution stage of the salt structure is clarified based on the forward modeling of tectonic evolution process of the Lower Congo basin in this study.

Key words: Lower Congo basin, numerical simulation, salt structure, tectonic evolution

中图分类号: 

  • P548
[1] Marton L G, Tari G C,Lehmann C T. Evolution of the Angolan Passive Margin,West Africa, with Emphasis on Postsalt Structural Styles[C]//Mohriak W U, Talwani M. Atlantic Rifts and Continental Margins. Washington DC:American Geophysical Union, 2000:129-149.
[2] Peel F J. The Engines of Gravity-Driven Movement on Passive Margins:Quantifying the Relative Contribution of Spreading vs. Gravity Sliding Mechanisms[J]. Tectonophysics, 2014, 633:126-142.
[3] Rowan M G,Lindsø S. Salt Tectonics of the Norwegian Barents Sea and Northeast Greenland Shelf[J]. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, 2017, 12:265-286.
[4] Roberts A M, Kusznir N J, Yielding G, et al. 2D Flexural Back Stripping of Extensional Basins:The Need for a Sideways Glance[J]. Petroleum Geoscience, 1998, 4:327-338.
[5] Macaulay E A. A New Approach to Backstripping and Sequential Restoration in Subsalt Sediments[J]. AAPG Bulletin, 2017, 101(9):1385-1394.
[6] Jackson M,Hudec M. Salt Tectonics:Principles and Practice[M]. Cambridge:Cambridge University Press, 2017:304-335.
[7] Adam J, Ge Z,Sanchez M. Post-Rift Salt Tectonic Evolution and Key Control Factors of the Jequitinhonha Deepwater Fold Belt, Central Brazil Passive Margin:Insights from Scaled Physical Experiments[J]. Marine and Petroleum Geology, 2012, 37(1):70-100.
[8] Allen J,Beaumont C. Impact of Inconsistent Density Scaling on Physical Analogue Models of Continental Margin Scale Salt Tectonics[J]. Journal of Geophysical Research, 2012, 117:B8103.
[9] Schultz-Ela D D. Origin of Drag Folds Bordering Salt Diapirs[J]. AAPG Bulletin, 2003, 87(5):757-780.
[10] Goteti R, Beaumont C, Steven J, et al. Factors Controlling Early Stage Salt Tectonics at Rifted Continental Margins and Their Thermal Consequences[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6):3190-3220.
[11] 王殿举, 李江海, 程鹏, 等. 构造倾斜角度对盐构造形成的控制模式:以下刚果盆地为例[J]. 北京大学学报(自然科学版), 2019, 55(2):277-288. Wang Dianju, Li Jianghai, Cheng Peng, et al. Salt Structure Formation Modeling Controlled by Structure Inclination Angle:Take the Lower Congo Basin as an Example[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2):277-288.
[12] General Bathymetric Chart of the Oceans[EB/OL]. (2019-01-13). http://www.gebco.net/.
[13] Anka Z, Michel S, Primio R D. Evidence of a Large Upper-Cretaceous Depocentre Across the Continent-Ocean Boundary of the Congo-Angola Basin:Implications for Palaeo-Drainage and Potential Ultra-Deep Source Rocks[J]. Marine and Petroleum Geology, 2010, 27(3):601-611.
[14] 方堃. 安哥拉下刚果盆地石油地质特征概述[J]. 内蒙古石油化工, 2018, 44(7):106-109. Fang Kun. Petroleum Geology in Angola Lower Congo Basin[J]. Inner Mongolia Petrochemical Industry, 2018, 44(7):106-109.
[15] Nombomakaya N L, Han C H. Pre-Salt Petroleum System of Vandji-Conkouati Structure (Lower Congo Basin), Republic of Congo[J]. Research Journal of Applied Sciences, 2012, 3:101-107.
[16] 秦雁群, 张光亚, 梁英波, 等. 南大西洋深水油气分布特征、聚集规律与勘探方向[J]. 天然气地球科学, 2016, 27(2):229-240. Qin Yanqun, Zhang Guangya, Liang Yingbo, et al. Distribution Characteristics, Accumulation Rules and Exploration Directions of Deep Water Hydrocarbon in South Atlantic[J]. Natural Gas Geoscience, 2016, 27(2):229-240.
[17] 张光亚, 温志新, 梁英波, 等. 全球被动陆缘盆地构造沉积与油气成藏:以南大西洋周缘盆地为例[J]. 地学前缘, 2014, 21(3):18-25. Zhang Guangya, Wen Zhixin, Liang Yingbo, et al. Tectonic-sedimentary Features and Petroleum Accumulation in the Passive Continental Margin Basins of South Atlantic Peripheries[J]. Earth Science Frontiers, 2014, 21(3):18-25.
[18] Mohriak W U, Leroy S. Architecture of Rifted Continental Margins and Insights from the South Atlantic, North Atlantic and Red Sea-Gulf of Aden Conjugate Margins[J]. Geological Society London Special Publications, 2013, 369(1):497-535.
[19] 陶崇智, 殷进垠, 陆红梅, 等. 南大西洋被动陆缘盆地盐岩对油气成藏的影响[J]. 石油实验地质, 2015, 37(5):614-618. Tao Chongzhi, Yin Jinyin, Lu Hongmei, et al. Impact of Salt on Hydrocarbon Accumulation in South Atlantic Passive Margin Basins[J]. Petroleum Geology and Experiment, 2015, 37(5):614-618.
[20] 逄林安. 西非下刚果盆地大型湖相浊积岩特征及勘探意义[J]. 海洋地质前沿, 2018, 34(4):41-48. Pang Lin'an. Characteristics and Exploration Potential of Lacustrine Turbiditic Sandstone in Lower Congo Basin of West Africa[J]. Marine Geology Frontiers, 2018, 34(4):41-48.
[21] Ho S, Cartwright J A, Imbert P. Vertical Evolution of Fluid Venting Structures in Relation to Aas Flux, in the Neogene-Quaternary of the Lower Congo Basin, Offshore Angola[J]. Marine Geology, 2012, 332/323/334:40-55.
[22] Davison I. Geology and Tectonics of the South Atlantic Brazilian Salt Basins[J]. Geological Society London Special Publications, 2007, 272(1):345-359.
[23] 黄兴, 杨香华, 朱红涛, 等. 下刚果盆地Madingo组海相烃源岩岩相特征和沉积模式[J]. 石油学报, 2017, 38(10):74-88. Huang Xing, Yang Xianghua, Zhu Hongtao,et al. Lithofacies Characteristics and Sedimentary Pattern of Madingo Formation Marine Hydrocarbon Source Rocks in Lower Congo Basin[J]. Acta Petrolei Sinica, 2017, 38(10):74-88.
[24] Liu L, Tang D, Xu H, et al. Reservoir Prediction of Deep-Water Turbidite Sandstones with Seismic Lithofacies Control:A Case Study in the C Block of Lower Congo Basin[J]. Marine & Petroleum Geology, 2016, 71:1-11.
[25] Oluboyo A P, Gawthorpe R L, Bakke K, et al. Salt Tectonic Controls on Deep-Water Turbidite Depositional Systems:Miocene, Southwestern Lower Congo Basin, Offshore Angola[J]. Basin Research, 2014, 26(4):597-620.
[26] Hudec M R, Jackson M P A. Terra Infirma:Understanding Salt Tectonics[J]. Earth-Science Reviews, 2007, 82(1/2):1-28.
[27] Anderson J E, Cartwright J, Drysdall S J, et al. Controls on Turbidite Sand Deposition During Gravity-Driven Extension of a Passive Margin:Examples From Miocene Sediments in Block 4, Angola[J]. Marine & Petroleum Geology, 2000, 17(10):1165-1203.
[28] Valle P J, Gjelberg J G,Helland-Hansen W. Tectonostratigraphic Development in the Eastern Lower Congo Basin, Offshore Angola, West Africa[J]. Marine & Petroleum Geology, 2001, 18:909-927.
[29] Teisserenc P,Villemin J. Sedimentary Basin of Gabon-Geology and Oil Systems[J]. American Association of Petroleum Geologists, 1989, 84:177-199.
[30] Lavier L, Steckler M, Brigaud F. An Improved Method for Reconstructing the Stratigraphy and Bathymetry of Continental Margins:Application to the Cenozoic Tectonic and Sedimentary History of the Congo Margin[J]. AAPG Bulletin, 2000, 84(7):923-939.
[31] Anka Z,Séranne M. Reconnaissance Study of the Ancient Zaire (Congo) Deep-Sea Fan(ZaiAngo Project)[J]. Marine Geology, 2004, 209(1):223-244.
[32] Anka Z, Séranne M, Lopez M, et al. The Long-Term Evolution of the Congo Deep-Sea Fan:A Basin-Wide View of the Interaction Between a Giant Submarine Fan and a Mature Passive Margin (Zaiango Project)[J]. Tectonophysics, 2009, 470(1):42-56.
[33] Morgan J K,Mcgovern P J. Discrete Element Simulations of Gravitational Volcanic Deformation:1:Deformation Structures and Geometries[J]. Journal of Geophysical Research Atmospheres, 2005, 110(B5):2701-2711.
[34] Maxwell S A. Deformation Styles of Allochthonous Salt Sheets During Differential Loading Conditions:Insights from Discrete Element Models[D]. Houston:Rice University, 2009:1-17.
[35] Dean S L,Morgan J K. Influence of Mobile Shale on Thrust Faults:Insights from Discrete Element Simulations[J]. AAPG Bulletin, 2015, 99(3):403-432.
[36] Unternehr P, Péronpinvidic G, Manatschal G, et al. Hyper-Extended Crust in the South Atlantic:In Search of a Model[J]. Petroleum Geoscience, 2010, 16(3):207-215.
[37] Nikolinakou M A, Luo G, Hudec M R, et al. Geomechanical Modeling of Stresses Adjacent to Salt Bodies:Part 2:Poroelastoplasticity and Coupled Overpressures[J]. AAPG Bulletin, 2012, 96(1):65-85.
[38] Ings S, Beaumont C,Gemmer L. Numerical Modeling of Salt Tectonics on Passive Continental Margins:Preliminary Assessment of the Effects of Sediment Loading, Buoyancy, Margin Tilt, and Isostasy[J]. Salt Sediment Interactions and Hydrocarbon Prospectivity:Concepts, Applications, and Case Studies for the 21st Century, 2004, 24:36-68.
[39] Morgan J K. Particle Dynamics Simulations of Rate and State-Dependent Frictional Sliding of Granular Fault Gouge[J]. Pure & Applied Geophysics, 2004, 161(9/10):1877-1891.
[40] Carter N L, Horseman S T, Russell J E, et al. Rheology of Rocksalt[J]. Journal of Structural Geology, 1993, 15(9/10):1257-1271.
[41] Channell J E T, Stoner J S, Hodell D A, et al. Geomagnetic Paleointensity for the Last 100 kyr from the Sub-Antarctic South Atlantic:A Tool for Inter-Hemispheric Correlation[J]. Earth & Planetary Science Letters, 2000, 175(1/2):145-160.
[42] 汤济广, 梅廉夫, 沈传波, 等. 平衡剖面技术在盆地构造分析中的应用进展及存在的问题[J]. 油气地质与采收率, 2006, 13(6):19-22. Tang Jiguang, Mei Lianfu, Shen Chuanbo, et al. Advances and Problems in the Application of Balanced Cross-Section Technique in Structure Studies of Basins[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(6):19-22.
[43] 毛小平, 吴冲龙, 袁艳斌. 地质构造的物理平衡剖面法[J]. 地球科学:中国地质大学学报, 1998, 23(2):167-170. Mao Xiaoping, Wu Chonglong, Yuan Yanbin, et al. Physical Balanced Cross Sections for Geological Structure[J]. Earth Science:Journal of China University of Geosciences, 1998, 23(2):167-170.
[44] Quirk D G, Schodt N, Lassen B, et al. Salt Tectonics on Passive Margins:Examples from Santos, Campos and Kwanza Basins[J]. Geological Society London Special Publications, 2012, 363(1):207-244.
[45] Duval B, Cramez C,Jackson M P A. Raft Tectonics in the Kwanza Basin, Angola[J]. Marine & Petroleum Geology, 1992, 9(4):389-404.
[46] Brun J P, Fort X. Salt Tectonics at Passive Margins:Geology Versus Models[J]. Marine & Petroleum Geology, 2011, 28(6):1123-1145.
[47] 于水, 胡望水, 李涛, 等. 下刚果盆地重力滑脱伸展构造生长发育特征[J]. 石油天然气学报, 2012, 34(3):28-33. Yu Shui, Hu Wangshui, Li Tao, et al. Features of Gravitational Decollement and Extension Structure Development in Lower Congo Basin[J]. Journal of Oil and Gas Technology, 2012, 34(3):28-33.
[48] 陈亮, 赵千慧, 王英民, 等. 盐构造与深水水道的交互作用:以下刚果盆地为例[J]. 沉积学报, 2017, 35(6):1197-1204. Chen Liang, Zhao Qianhui, Wang Yingmin, et al. Interactions Between Submarine Channels and Salt Structures:Examples from the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6):1197-1204.
[49] Anka Z, Ondrak R, Kowitz A, et al. Identification and Numerical Modelling of Hydrocarbon Leakage in the Lower Congo Basin:Implications on the Genesis of Km-Wide Seafloor Mounded Structures[J]. Tectonophysics, 2013, 604:153-171.
[50] 马中振, 谢寅符, 张志伟,等. 南美东缘盐岩发育特征及其与油气聚集的关系[J]. 吉林大学学报(地球科学版), 2013, 43(2):360-370. Ma Zhongzhen, Xie Yinfu, Zhang Zhiwei, et al. Salt Development Characteristics and Its Controlling on Hydrocarbon Accumulation in Eastern Margin of South America[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2):360-370.
[1] 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172.
[2] 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138.
[3] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[4] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[5] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[6] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[7] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[8] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[9] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[10] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[11] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[12] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[13] 李昂, 鞠林波, 张丽艳. 塔里木盆地古城低凸起古-中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版), 2018, 48(2): 545-555.
[14] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[15] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!