吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (6): 1844-1853.doi: 10.13278/j.cnki.jjuese.20190138

• 地质工程与环境工程 • 上一篇    

南京汤山地区地热水资源评价

吕雅馨1, 骆祖江1, 徐成华2   

  1. 1. 河海大学地球科学与工程学院, 南京 211100;
    2. 江苏省地质矿产局第一地质大队, 南京 210041
  • 收稿日期:2019-06-28 发布日期:2020-12-11
  • 通讯作者: 骆祖江(1965-),男,教授,博士生导师,主要从事地质工程、地下水科学与工程等方面的教学与科研工作,E-mail:luozujiang@sina.com E-mail:luozujiang@sina.com
  • 作者简介:吕雅馨(1996-),女,硕士研究生,主要从事地热水、地质环境等方面的研究,E-mail:lyxjasmine@qq.com
  • 基金资助:
    江苏省地质勘查基金项目(2018-96-13)

Evaluation of Geothermal Water Resources in Tangshan Area, Nanjing

Lü Yaxin1, Luo Zujiang1, Xu Chenghua2   

  1. 1. School of Earth Science and Engineering, Hohai University, Nanjing 211100, China;
    2. The First Geological Brigade of the Bureau of Geology and Mineral Resources of Jiangsu, Nanjing 210041, China
  • Received:2019-06-28 Published:2020-12-11
  • Supported by:
    Supported by Project of Geological Survey of Jiangsu (2018-96-13)

摘要: 为了准确规划和评价南京汤山地区地热水资源的可开采量,预测在规划开采条件下的地热水水位和水温的变化,在充分研究了汤山地区地热水系统水文地质特征的基础上,概化出南京汤山地区地热水系统的水文地质概念模型,建立了地热水非稳定渗流和热量运移三维耦合数学模型,模拟预测了降深不超过50 m时的地热水可开采量及其水位和水温的变化。结果表明:汤山地区现有14口地热水井的可开采量有所差异,最大为R08(温泉公司1#),开采量可达1 450.0 m3/d,最小为R11(中闻集团2#),开采量仅有125.0 m3/d,地热水的总可开采量为3.08×106m3/a;且随着开采的进行,地热水水位逐渐下降,各地热水井温度逐渐上升,上升幅度略有不同,年均水温上升2~3℃。

关键词: 南京汤山地区, 地热水, 数值模拟, 可开采量, 水位水温

Abstract: In order to accurately evaluate and plan the allowable exploitation quantity of geothermal water in Tangshan area, Nanjing, and to predict the changes of water level and temperature under the planned mining conditions, based on a full understanding of the hydrogeological information of geothermal water system, a hydrogeological conceptual model in Tangshan area was generalized,and a three-dimensional coupling mathematical model of unsteady seepage and heat transfer of groundwater was established in this area. The allowable exploitation quantity of geothermal water and the changes of water level and temperature were predicted under the condition that the drawdown is no more than 50 m. The results of simulation show that the allowable exploitation quantity of 14 existing geothermal water wells in Tangshan varies from 125.0 m3/d (R11) to 1 450.0 m3/d (R08). The total allowable exploitation quantity of geothermal water is 3.08×106m3/a. With the decrease of geothermal water level, its temperature rises 2-3℃ per year on average.

Key words: Tangshan area in Nanjing, geothermal water, numerical simulation, allowable exploitation quantity, water level and temperature

中图分类号: 

  • TV21
[1] 地热资源地质勘查规范:GB/T 11615-2010[S]. 北京:中国标准出版社,2010. Geologic Exploration Standard of Geothermal Resources:GB/T 11615-2010[S]. Beijing:Standards Press of China, 2010.
[2] 魏永霞,唐仲华,左霖.数值模拟在地热资源评价及优化开采方案的应用研究[J].安徽地质,2019,29(1):74-80. Wei Yongxia, Tang Zhonghua, Zuo Lin. Study on Application of Numerical Simulation in Geothermal Resource Evaluation and Optimization of Exploitation Scheme[J]. Geology of Anhui, 2019,29(1):74-80.
[3] Iqbal K S, Heru B P. A Natural State Model and Resource Assessment of Ulumbu Geothermal Field[J]. IOP Conference Series:Earth and Environmental Science.doi:10.1088/1755-1315/254/1/012017.
[4] 刘杰,宋美钰,田光辉.天津地热资源开发利用现状及可持续开发利用建议[J].地质调查与研究,2012,35(1):67-73. Liu Jie, Song Meiyu, Tian Guanghui. Development Situation of the Geothermal Resources and Suggestion on Sustainable Development Utilization in Tianjin[J].Geological Survey and Research, 2012,35(1):67-73.
[5] 朱喜,张庆莲,刘彦广. 基于热储法的鲁西平原地热资源评价[J].地质科技情报,2016,35(4):172-177. Zhu Xi, Zhang Qinglian, Liu Yanguang. Evaluation of the Geothermal Resources in the Plain of West Shandong Province[J]. Geological Science and Technology Information, 2016,35(4):172-177.
[6] 姜智超. 黑龙江省绥化市地热田地热资源评价及合理开发利用[D].长春:吉林大学,2015. Jiang Zhichao. The Evaluation and Rational Exploitation of Geothermal Resources in the Geothermal Field in Suihua City, Heilongjiang Province[D]. Changchun:Jilin University, 2015.
[7] 张思桃.中山虎池围地热田地热资源储量计算与评价研究[J].地下水,2018,40(6):33-36. Zhang Sitao. Study on Calculation and Evaluation of Geothermal Resource Reserves in Huchiwei (Weichi Lake) Geothermal Field,Zhongshan[J]. Ground Water, 2018,40(6):33-36.
[8] 赵剑畏,朱士鹏.南京汤山地下热水的控制因素与资源前景[J].地质学刊,1998(4):52-58. Zhao Jianwei, Zhu Shipeng. Control Factors and Resources Prospect of Geothermal Water in Tangshan Hill of Nanjing[J]. Journal of Geology, 1998(4):52-58.
[9] 李爱勇,朱春生,杨生.南京汤山温泉形成条件探讨[J].矿产勘查,2010,1(6):546-549. Li Aiyong, Zhu Chunsheng, Yang Sheng. The Research on Formation Condition of Tangshan Warm Spring in Nanjing[J]. Mineral Exploration, 2010,1(6):546-549.
[10] 朱春生. 南京汤山温泉形成条件与热源探讨[C]//江西省地质学会.2015地学新进展:第十三届华东六省一市地学科技论坛文集.南昌:江西省地质学会, 2015:316-319. Zhu Chunsheng. Forming Condirions and Heat Source of the Tangshan Hot Spring in Nanjing[C]//Jiangxi Geological Society. New Progress of Geosciences in 2015:Collection of the 13th Geosciences Science and Technology Forum of Six Provinces and One City in East China. Nanchang:Jiangxi Geological Society, 2015:316-319.
[11] 邹鹏飞,邱杨,王彩会.南京汤山温泉区地热水成因模式分析[J].高校地质学报,2015,21(1):155-162. Zou Pengfei, Qiu Yang, Wang Caihui. Analyses of the Genesis of Tangshan Hot Spring Area in Nanjing[J]. Geological Journal of China Universities, 2015,21(1):155-162.
[12] 栾光忠,邱汉学.中低温对流型地热系统的典型成因:南京汤山地热系统的分析[J].中国海洋大学学报,1998,28(1):160-164. Luan Guangzhong, Qiu Hanxue. The Type of Low-Medium Temperature Geothermal System of Convection Type:The Genesis Analysis of Tangshan Geothermal System in Nanjing[J]. Periodical of Ocean University of China, 1998,28(1):160-164.
[13] 张金华,魏伟,杜东,等.地热资源的开发利用及可持续发展[J].中外能源,2013,18(1):30-35. Zhang Jinhua, Wei Wei, Du Dong, et al. The Development, Utilization and Sustainable Development of Geothermal Resources[J]. Sino-Global Energy, 2013,18(1):30-35.
[14] 骆祖江,杜菁菁.基于热平衡分析的地埋管地源热泵换热方案模拟优化[J].农业工程学报,2018,34(13):246-254,320. Luo Zujiang, Du Jingjing. Heat Exchange Scheme Simulation Optimization for Ground Source Heat Pump System with Buried Pipes by Thermal Equilibrium Analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(13):246-254, 320.
[15] 赵敬波. 地下热水流动与热量运移的三维非稳定流数值模拟研究[D].北京:中国地质大学(北京),2015. Zhao Jingbo. 3-Dimensional Numerical Modeling of Unsteady Thermal Groundwater Flow and Heat Transport[D]. Beijing:China University of Geosciences (Beijing), 2015.
[16] 周世玲,骆祖江,于丹丹,等.地下水源热泵系统热平衡预测三维数值模拟[J].中国煤炭地质,2014,26(9):34-39. Zhou Shiling, Luo Zujiang, Yu Dandan,et al. 3D Numerical Simulation of Groundwater Source Heat Pimp System Thermal Equilibrium Prediction[J]. Coal Geology of China, 2014,26(9):34-39.
[17] Donaldson I G, and Grant M A. An Estimate of the Resource Potential of New Zealand Geothermal Fields for Power Generation[J]. Geothermics. doi:10.1016/0375-6505(78)90014-7.
[18] Luo Zujiang, Wang Yan, Zhou Shiling, et al. Simulation and Prediction of Conditions for Effective Development of Shallow Geothermal Energy[J]. Applied Thermal Engineering, 2015, 91:370-376.
[1] 李一赫, 王殿举, 于法浩, 刘志强. 下刚果盆地白垩系盐构造的形成演化[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1628-1638.
[2] 段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1161-1172.
[3] 盛冲, 许鹤华, 张云帆, 张文涛, 任自强. 钙质砂水理性质及对岛礁淡水透镜体形成的影响[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1127-1138.
[4] 孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1723-1731.
[5] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1698-1705.
[6] 王常明, 李桐, 田书文, 李硕. 基于LAHARZ的泥石流堆积范围预测模型的建立及应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1672-1679.
[7] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[8] 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072.
[9] 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761.
[10] 杨冰, 许天福, 李凤昱, 田海龙, 杨磊磊. 水-岩作用对储层渗透性影响的数值模拟研究——以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
[11] 陈永珍, 吴斌, 杨帆, 吴纲, 翁杨. 充气截排水渗流与变形耦合数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(2): 485-492.
[12] 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433.
[13] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[14] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[15] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!