吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (3): 704-722.doi: 10.13278/j.cnki.jjuese.20200099

• 地质与资源 • 上一篇    下一篇

南秦岭山阳—柞水矿集区夏家店金矿床微量-铂族元素地球化学特征及其对矿床成因的指示

曾志杰, 陈雷   

  1. 中国地质科学院矿产资源研究所/自然资源部成矿作用与资源评价重点实验室, 北京 100037
  • 收稿日期:2020-04-24 出版日期:2021-05-26 发布日期:2021-06-07
  • 通讯作者: 陈雷(1982—),男,博士,主要从事矿床地质方面的研究,E-mail:chenleihx@126.com E-mail:chenleihx@126.com
  • 作者简介:曾志杰(1995—),男,硕士研究生,主要从事矽卡岩型钨钼矿床成矿作用方面的研究,E-mail:1146509494@qq.com
  • 基金资助:
    国家自然科学基金项目(41872092);"十二五"国家科技支撑计划项目(2011BAB04B05)

Geochemistry of Trace and Platinum Group Elements of Xiajiadian Gold Deposit in Shanyang-Zhashui Ore Concentration Area in South Qinling: Implications of Ore Genesis

Zeng Zhijie, Chen Lei   

  1. Institute of Mineral Resources, Chinese Academy of Geological Sciences/Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Natural Resources, Beijing 100037, China
  • Received:2020-04-24 Online:2021-05-26 Published:2021-06-07
  • Supported by:
    Supported by the National Natural Science Foundation of China (41872092) and the National Science and Technology Support Program of China During the "12th Five-Year" Plan Period (2011BAB04B05)

摘要: 夏家店金矿床位于南秦岭造山带内,是一个受构造和地层控制的大型金矿床,矿石类型为角砾岩型、碎裂岩型和石英脉型3种类型,赋矿围岩主要为寒武系水沟口组的炭泥质板岩、炭硅质板岩、硅质岩及白云岩,次为泥盆系西岔河组的角砾岩。本文对夏家店金矿床中矿石(角砾状炭硅质板岩、碎裂硅化白云岩、碎裂炭泥质板岩和石英脉状矿化的硅质岩)和围岩(硅质岩、硅化白云岩和硅质板岩)的微量元素、铂族元素(PGE)质量分数进行测试,进而探讨成矿物质来源以及矿床成因。结果表明:不同类型的矿石与其各自的围岩具有高度的相似性,均富集Sr、Ga、Zr等元素;不同类型的矿石稀土总量均高于各类围岩,但是两者具有相似的稀土配分模式,轻稀土富集,重稀土亏损,均表现出负Eu异常(δEu值为0.51~0.63);不同类型的矿石PGE总量(7.71×10-9~38.30×10-9,平均值23.00×10-9)均明显大于各类围岩PGE总量(1.28×10-9~2.44×10-9,平均值1.86×10-9),相比上地壳,不同类型的矿石均明显富集Os、Ir、Pt和Pd,亏损Ru、Rh,而各类围岩均富集Os,亏损Pt、Ru、Rh、Pd,但两者的铂族元素配分曲线具有高度相似性,呈Ru亏损的V型,为地壳的(Os)-Pt-Pd型配分模式。以上特征表明不同类型的矿石和围岩具有明显的微量、稀土元素和PGE地球化学继承性,暗示夏家店下寒武统有可能是重要的矿源层之一。同时,所有矿石和围岩的Au/Ir值(分别为4 821~299 666)和406~8 050)及Pd/Ir值(分别为16.9~588.0和15.2~47.5)变化范围均较大,两者Au/Ir值远高于炭质球粒陨石和原始地幔值、Pd/Ir值远高于岩浆成因矿石值,且夏家店金矿床矿石和围岩的PGE配分曲线与典型热液成因矿床一致。这些特征显示夏家店金矿床具有明显的热液成因,是构造-热液流体成矿作用的产物。

关键词: 微量元素, 铂族元素, 地球化学, 矿床成因, 夏家店金矿床, 山阳—柞水矿集区, 南秦岭

Abstract: The Xiajiadian gold deposit, located in the South Qinling orogenic belt, is a large-scale gold deposit controlled by structure and strata. The ore is divided into three types: Breccia type, cataclastic type,and quartz vein type. The host rocks are mainly carbonaceous argillaceous slate, carbonaceous siliceous slate, siliceous rock and dolomite of the Cambrian Shuigoukou Formation, followed by breccia of the Devonian Xichahe Formation. In this paper, the content of trace elements and platinum group elements (PGE) of ores (brecciated carbonaceous siliceous slate, cataclastic silicified dolomite, cataclastic carbonaceous argillaceous slate,and quartz vein mineralized siliceous rock) and surrounding rocks (siliceous rock, silicified dolomite, and siliceous slate) in Xiajiadian gold deposit are determined, and then the source of ore-forming materials and the genesis of the deposit are discussed. The results show that: 1) Different types of ores and their surrounding rocks are highly similar, and they are rich in Sr, Ga, Zr and other elements; 2) The total amount of rare earth elements (REE) in different types of ores is higher than that in various types of surrounding rocks, but they have similar REE distribution patterns with light rare earth enrichment, heavy rare earth depletion, and negative δEu anomaly (0.51-0.63); 3) The total amount of PGE in different types of ores (7.71×10-9-38.30×10-9, average 23.00×10-9) is significantly higher than that in various types of surrounding rocks (1.28×10-9-2.44×10-9, average 1.86×10-9). Compared with the upper crust, the ores are obviously rich in Os, Ir, Pt, and Pd, and depleted of Ru and Rh; The surrounding rocks are rich in Os and depleted in Pt, Ru, Rh, and Pd, but PGE distribution curves of the two are highly similar, showing the V-type Ru deficiency, which is the (Os)-Pt-Pd type distribution model of the crust. The above characteristics indicate that different types of ores and surrounding rocks have obvious trace, REE and PGE geochemical inheritance, suggesting that the Lower Cambrian strata in Xiajiadian may be one of the important ore source strata. The Au/Ir ratio (4 821-299 666 and 406-8 050, respectively) and Pd/Ir ratio (16.9-588.0 and 15.2-47.5, respectively) of all ores and surrounding rocks vary widely, the Au/Ir ratios of both ores and surrounding rocks are much higher than those of carbonaceous chondrites and primitive mantle, the Pd/Ir ratios are much higher than those of magmatic ores, and the PGE distribution curves of ores and surrounding rocks of Xiajiadian gold deposit are consistent with those of the typical hydrothermal deposits, which show that Xiajiadian gold deposit has obvious hydrothermal genesis and is the product of tectonic hydrothermal fluid mineralization.

Key words: trace elements, platinum group elements, geochemistry, genesis of the deposit, Xiajiadian gold deposit, Shanyang-Zhashui ore concentration area, Southern Qinling Mountains

中图分类号: 

  • P618.5
[1] Mattauer M, Matte P, Malavieille J,et al. Tectonics of the Qinling Belt: Build-Up and Evolution of Eastern Asia[J]. Nature, 1985, 317: 496-500.
[2] Kröner A, Zhang G W, Sun Y. Granulites in the Tongbai Area, Qinling Belt, China: Geochemistry,Petrology, Single Zircon Geochronology, and Implications for the Tectonic Evolution of Eastern Asia[J]. Tectonics, 1993, 12(1): 245-255.
[3] Meng Q R, Zhang G W. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China[J]. Tectonophysics, 2000, 323(3): 183-196.
[4] 张国伟,董云鹏,姚安平. 造山带与造山作用及其研究的新起点[J]. 西北地质,2001, 34(1): 1-9. Zhang Guowei, Dong Yunpeng, Yao Anping. Orogenic Belt and Orogeny and a New Starting Point for Their Study[J]. Northwestern Geology, 2001, 34(1):1-9.
[5] 王宗起,闫全人,闫臻,等. 秦岭造山带主要大地构造单元的新划分[J]. 地质学报,2009, 83(11): 1527-1546. Wang Zongqi, Yan Quanren, Yan Zhen, et al. New Division of Main Tectonic Units in Qinling Orogenic Belt[J]. Acta Geological Sinica, 2009, 83(11): 1527-1546.
[6] 王东生,王瑞廷,代军治,等. 秦岭造山带金属矿床的"二元控矿"特征[J]. 地质学报,2009, 83(11): 1719-1729. Wang Dongsheng, Wang Ruiting, Dai Junzhi, et al. Characteristics of Binary Ore Control of Metal Deposits in Qinling Orogenic Belt[J]. Acta Geological Sinica, 2009, 83(11):1719-1729.
[7] 贾少华. 武当西缘六斗金矿及银洞沟银多金属矿床成因研究[D]. 北京:中国地质大学(北京),2015. Jia Shaohua.Genesis of Liudou Gold Deposit and Yindonggou Silver Polymetallic Deposit in the Western Margin of Wudang[D]. Beijing: China University of Geosciences (Beijing), 2015.
[8] 范玉须,方维萱. 八卦庙金矿叠加复合成矿模式探讨[J]. 地球科学进展,2012, 27(增刊1): 160-161. Fan Yuxu, Fang Weixuan. Discussion on the Superimposed Composite Metallogenic Model of Baguamiao Gold Deposit[J] Advances in Earth Science, 2012, 27(Sup.1): 160-161.
[9] 樊硕诚,金勤海. 陕西双王型金矿床[C]//刘东升. 中国卡林型(微细浸染型)金矿. 南京:南京大学出版社,1994: 254-285. Fan Shuocheng, Jin Qinhai. Shuangwang Gold Deposit in Shaanxi[C]//Liu Dongsheng. Carlin-Type (Micro-Disseminated Type) Gold Deposit in China. Nanjing: Nanjing University Press, 1994: 254-285.
[10] 张复新,宗静婷,马建秦. 秦岭卡林型金矿床及相关问题探讨[J]. 矿床地质,1998, 17(2): 77-89. Zhang Fuxin, Zong Jingting, Ma Jianqin. Discussion on Carlin-Type Gold Deposits and Related Problems in Qinling Mountains[J]. Mineral Deposits, 1998, 17(2): 77-89.
[11] 杨皓,王东升,王宗起,等. 陕西勉略地区铧厂沟造山型金矿构造控矿特征[J]. 地球科学与环境学报,2017, 39(6): 795-806. Yang Hao, Wang Dongsheng, Wang Zongqi, et al. Tectonic Ore-Controlling Characteristics of Huachangou Orogenic Gold Deposit in Mianlüe Region, Shaanxi Province[J]. Journal of Earth Sciences and Environment, 2017, 39(6): 795-806.
[12] 马玉见,梁涛,卢仁,等. 河南省西峡县水地沟金矿地质特征及S、Pb同位素示踪[J]. 地质与勘探,2019, 55(2): 472-483. Ma Yujian, Liang Tao, Lu Ren, et al. Geological Characteristics and S, Pb Isotope Tracing of Shuidigou Gold Deposit, Xixia County, Henan Province[J]. Geology and Exploration, 2019, 55(2): 472-483.
[13] 王路. 河南嵩县下蒿坪—店房金矿床地质地球化学特征[D]. 焦作:河南理工大学,2012. Wang Lu. Geological and Geochemical Characteristics of Xiaqiaoping-Dianfang Gold Deposit in Song County, Henan Province[D]. Jiaozuo: Henan Polytechnic University, 2012.
[14] 张文,王建国,李孝红,等. 河南庄金矿床成矿流体特征及矿床成因[J]. 有色金属(矿山部分),2012, 64(2): 52-57. Zhang Wen, Wang Jianguo, Li Xiaohong, et al. Characteristics and Genesis of Metallogenic Fluid in Henanzhuang Gold Deposit in Henan Province[J]. Nonferrous Metals (Mine Section), 2012, 64(2): 52-57.
[15] 秦明,杨贺杰,何玉州,等. 河南梅子沟金矿矿床地质特征及矿床成因浅析[J]. 矿产勘查,2018, 9(4): 596-602. Qin Ming, Yang Hejie, He Yuzhou, et al. Geological Characteristics and Genesis of Meizigou Gold Deposit in Henan Province[J]. Mineral Exploration, 2018, 9(4): 596-602.
[16] 方芳,门道改,李娜,等. 河南省西峡县高庄金矿床成矿地质条件、矿床成因及找矿前景[J].矿产与地质,2017, 31(3): 517-523. Fang Fang, Men Daogai, Li Na, et al. Metallogenic Geological Conditions, Genesis and Prospect of Gaozhuang Gold Deposit, Xixia County, Henan Province[J]. Mineral Resources and Geology, 2017, 31(3): 517-523.
[17] 侯俊富. 南秦岭下寒武统黑色岩系中金-钒成矿特征及成矿规律[D]. 西安:西北大学,2008. Hou Junfu. Metallogenetic Characteristics and Regularities of Au-V Mineralization in Lower Cambrian Black Rock Series, Southern Qinling Moutains, China[D]. Xi’an: Northwestern University, 2008.
[18] 刘军威. 陕西夏家店金钒矿床特征与控矿因素分析[J]. 西北地质,2011, 44(2): 102-109. Liu Junwei. Characteristics and Ore Controlling Factors of Xiajiadian Gold Vanadium Deposit in Shaanxi Province[J]. Northwestern Geology, 2011, 44(2): 102-109.
[19] 徐宗蛟. 夏家店金钒矿成矿规律及成矿模式[J].现代矿业, 2013, 29(7): 58-59, 76. Xu Zongjiao. Metallogenic Regularity and Metallogenic Model of Xiajiadian Gold Vanadium Deposit[J]. Modern Mining, 2013, 29(7): 58-59, 76.
[20] 王立社. 陕西秦岭黑色岩系及其典型矿床地质地球化学与成矿规律研究[D]. 西安:西北大学,2009. Wang Lishe. Geochemical and Metallogenic Regularity of the Black Rock Series and Its Typical Deposits in Qinling Mountains, Shaanxi Province[D].Xi’an: Northwestern University, 2009.
[21] 夏长玲,赵晓龙,王瑞廷,等. 陕西省山阳县夏家店金(钒)矿地质特征、成矿模式与找矿预测[J]. 西北地质,2015, 48(1): 164-171. Xia Changling, Zhao Xiaolong, Wang Ruiting, et al. Geological Characteristics, Metallogenic Model and Prospecting of Xiajiadian Gold-Vanadium Deposit in Shanyang County, Shaanxi Province[J]. Northwestern Geology, 2015, 48(1): 164-171.
[22] 高菊生,朱华平,原莲肖,等. 陕西山阳夏家店金矿床地质与流体地球化学[J]. 西北地质,2007, 40(3): 68-74. Gao Jusheng, Zhu Huaping, Yuan Lianxiao, et al. Geological and Geochemical Characteristics of Fluid Inclusion in Xiajiadian Gold Deposit, Shaanxi Province[J]. Northwestern Geology, 2007, 40(3): 68-74.
[23] 原莲肖,任涛,李英,等. 陕西山阳县夏家店金矿物质组分和成矿流体特征及成矿物质来源探讨[J]. 地质与勘探,2007, 43(5): 68-73. Yuan Lianxiao, Ren Tao, Li Ying, et al. Component, Ore-Forming Fluids and Material Sources in the Xiajiadian Gold Deposit of Shanyang County, Shaanxi[J]. Geology and Exploration, 2007, 43(5): 68-73.
[24] 张复新,王立社,侯俊富. 秦岭造山带黑色岩系与金属矿床类型及成矿系列[J]. 中国地质,2009, 36(3): 694-704. Zhang Fuxin, Wang Lishe, Hou Junfu. Black Rock Series, Types of Ore Deposits and Ore-Forming Systems in Qinling Orogenic Belt[J]. Geology in China, 2009, 36(3): 694-704.
[25] 任涛,王瑞廷,孟德明,等. 南秦岭造山型金矿地质特征及成矿模式:以陕西山阳夏家店金(钒)矿床为例[J]. 西北地质,2014, 47(1): 150-158. Ren Tao, Wang Ruiting, Meng Deming, et al. Geological Characteristics and Metallogenic Model of the Orogenic-Type Gold Deposit in South Qinling: A Case of Xiajiadian Gold (Vanadium) Deposit, Shanyang County, Shaanxi Province[J]. Northwestern University, 2014, 47(1): 150-158.
[26] 李声浩. 南秦岭夏家店金矿床成因与成矿机制探讨[D]. 西安:西北大学,2019. Li Shenghao. Ore Genesis and Metallogenic Mechanismof the Xiajiadian Gold Deposit in South Qinling Orogen-Evidence from Element Geochemistry and Fluid Inclusions Study[D]. Xi’an: Northwestern University, 2019.
[27] 刘凯,王瑞廷,樊忠平,等. 秦岭造山带柞水—山阳矿集区夏家店金矿床成矿时代及其地质意义[J]. 矿床地质,2019, 38(6): 1278-1296. Liu Kai, Wang Ruiting, Fan Zhongping, et al. Metallogenic Age of Xiajiadian Gold Deposit in the Zhashui-Shanyang Ore Concentration, Qinling Orogenic Belt and Its Geological Significance[J]. Mineral Deposits, 2019, 38(6): 1278-1296.
[28] 周铁锁,肖丽,张复新,等. 陕西夏家店卡林型金矿床地质地球化学特征[J]. 黄金地质,2004, 10(3): 17-21. Zhou Tiesuo, Xiao Li, Zhang Fuxin, et al. Geological and Geochemical Characteristics of Xiajiadian Carlin-Type Gold Deposit, Shaanxi[J]. Gold Geology, 2004, 10(3): 17-21.
[29] 齐亚林. 陕西山阳夏家店卡林型金矿床地质地球化学研究[D].西安:西北大学,2005. Qi Yalin. Character of Geological and Geochemical of Xiajiadian Carlin-Type Deposit in Shanyang Country, Shaanxi Province[D]. Xi’an: Northwestern University, 2005.
[30] 王立社,张复新,侯俊富,等. 秦岭山阳水沟口组黑色岩系微量元素地球化学及其沉积成矿背景的指示意义[J]. 中国地质,2012, 39(2): 311-325. Wang Lishe, Zhang Fuxin, Hou Junfu, et al. Trace Element Geochemical Characteristics of the Shuigoukou Formation Black Rock Series in Shanyang Area of the Qinling Mountains and Their Indication Significance for Sedimentation-Mineralization[J]. Geology in China, 2012, 39(2): 311-325.
[31] 李声浩,朱赖民,丁乐乐,等. 南秦岭夏家店金矿床赋矿黑色岩系元素地球化学及其成矿意义[J]. 地学前缘,2019, 26(5): 129-145. Li Shenghao, Zhu Laimin, Ding Lele, et al. Elemental Geochemistry of the Ore-Bearing Black Rock Series in the Xiajiadian Gold Deposit, South Qinling and Their Metallogenic Significance[J]. Earth Science Frontiers, 2019, 26(5): 129-145.
[32] 朱华平,任涛,李建斌,等. 陕西山阳县夏家店金矿床地质特征、控矿因素与金的富集规律[J]. 地质通报,2004, 23(7): 695-701. Zhu Huaping, Ren Tao, Li Jianbin, et al. Geological Characteristics, Ore-Controlling Factors and Gold Accumulation Law of Xiajiadian Gold Deposit in Shanyang County, Shaanxi Province[J]. Geological Bulletin of China, 2004, 23(7): 695-701.
[33] 张复新,肖丽,齐亚林. 卡林型-类卡林型金矿床勘查与研究回顾及展望[J]. 中国地质,2004, 31(4): 406-412. Zhang Fuxin, Xiao Li, Qi Yalin. A Review and Prospect of the Exploration and Research of Carlin-Carin-Like Gold Deposit[J]. Geology in China, 2004, 31(4): 406-412.
[34] 王伟涛,肖丽,周铁锁,等. 南秦岭夏家店卡林型金矿床构造特征与成矿关系[J]. 西北地质,2004, 37(3): 61-66. Wang Weitao, Xiao Li, Zhou Tiesuo, et al. Structural Characteristics and Metallogenic Relationship of the Xiajiadian Carlin-Type Gold Deposit in South Qinling[J]. Northwestern Geology, 2004, 37(3): 61-66.
[35] 任涛,樊忠平,原莲肖,等. 南秦岭东段早寒武世黑色岩系金钒成矿特征与找矿方向:以夏家店矿床为例[J]. 西北地质,2007, 40(2): 85-94. Ren Tao, Fan Zhongping, Yuan Lianxiao, et al. Metallogenic Characteristicsand Prospecting Target of Au-V Deposits in Early Cambrian Black Rock Series in the Eastern South Qinling: A Case Study of the Xiajiadian Deposit[J]. Northwestern University, 2007, 40(2): 85-94.
[36] 王宗起,王涛,闫臻,等. 秦岭晚古生代弧前增生的背驮型盆地体系[J]. 地质通报,2002, 21(8/9): 456-464. Wang Zongqi, Wang Tao, Yan Zhen, et al. Piggyback Basin System of Late Paleozoic Pre-Arc Hyperplasia in Qinling Mountains[J]. Geological Bulletin of China, 2002, 21(8/9): 456-464.
[37] Yan Z, Wang Z Q, Yan Q R, et al. Geochemical Constraints on the Provenance and Depositional Setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the Tectonic Evolution of the Qinling Orogenic Belt[J]. Journal of Sedimentary Research, 2012, 82(1): 9-20.
[38] 张国伟,张宗清,董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义[J]. 岩石学报,1995, 11(2): 101-114. Zhang Guowei, Zhang Zongqing, Dong Yunpeng. Tectonic Properties of Main Tectonic Lithostratigraphic Units in Qinling Orogenic Belt and Its Tectonic Significance[J]. Acta Petrologica Sinica, 1995, 11(2): 101-114.
[39] 王瑞廷,李剑斌,任涛,等. 柞水—山阳多金属矿集区成矿条件及找矿潜力分析[J]. 中国地质,2008, 35(6): 1291-1298. Wang Ruiting, Li Jianbin, Ren Tao, et al. Analysis on Metallogenic Conditions and Prospecting Potential of Zhashui-Shanyang Polymetallic Ore Concentration Area[J]. Geology in China, 2008, 35(6): 1291-1298.
[40] 闫臻,王宗起,陈雷,等. 南秦岭山阳—柞水矿集区构造-岩浆-成矿作用[J]. 岩石学报,2014, 30(2): 401-414. Yan Zhen, Wang Zongqi, Chen Lei, et al. Tectonic-Magmatic-Metallogenic Process in Shanyang-Zhashui Ore Concentration Area of South Qinling[J]. Acta Petrologica Sinica,2014, 30(2): 401-414.
[41] 陈雷,闫臻,王宗起,等. 南秦岭山阳—柞水矿集区大西沟-银硐子铁-银-铅锌-铜矿床磁铁矿地球化学特征:对矿床成因的约束[J]. 矿物岩石,2016, 36(4): 38-49. Chen Lei, Yan Zhen, Wang Zongqi, et al.Geochemical Characteristics of Magnetite in Daxigou-Yindongzi Fe-Ag-Pb-Zn-Cu Deposit in Shanyang-Zhashui Ore Concentration Area of South Qinling: Constraints on Genesis of the Deposit[J]. Journal of Mineralogy and Petrology, 2016, 36(4): 38-49.
[42] 陈雷,王宗起,闫臻,等. 秦岭山阳—柞水矿集区150~140 Ma斑岩-矽卡岩型CuMoFe(Au)矿床成矿作用研究[J]. 岩石学报,2014,30(2): 415-436. Chen Lei, Wang Zongqi, YanZhen, et al. Mineralization of the 150~140 Ma Porphyry-Skarn CuMoFe(Au) Deposit in the Shanyang-Zhashui Ore Concentration Area of Qinling Mountains[J]. Acta Petrologica Sinica, 2014, 30(2): 415-436.
[43] 张国伟,孟庆任,赖绍聪. 秦岭造山带的结构构造[J]. 中国科学:B辑,1995, 25(9): 994-1003. Zhang Guowei, Meng Qingren, Lai Shaocong. Structural of Qinling Orogenic Belt[J]. Science in China:Series B, 1995, 25(9): 994-1003.
[44] 胡远平,宋清理,胡兴旺. 陕西山阳县夏家店矿床成矿机理及找矿预测[J]. 地球科学前沿,2017, 7(1): 58-66. Hu Yuanping, Song Qingli, Hu Xingwang. Ore-Forming Mechanism and Prospecting Prediction of Xiajiadian Deposit in Shanyang County, Shaanxi Province[J]. Frontiers of Earth Science, 2017, 7(1): 58-66.
[45] 樊忠平,任涛,王瑞廷,等. 陕西省山阳县夏家店金(钒)矿床成矿地质特征及找矿前景分析[J]. 矿产与地质,2011, 25(1):41-46. Fan Zhongping, Ren Tao, Wang Ruiting, et al.Analysis on Metallogenic Geological Characteristics and Prospecting Prospect of Xiajiadian Gold (Vanadium) Deposit in Shanyang County, Shaanxi Province[J]. Mineral Resources and Geology, 2011, 25(1): 41-46.
[46] 赵亚云,刘晓峰,刘远超,等. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版),2020, 50(5): 1323-1339. Zhao Yayun, Liu Xiaofeng, Liu Yuanchao, et al. Petrogenesis and Metallogenic Implication of Ore-Bearing Rock Mass of Copper Polymetallic Ore Occurrence in Duorenze-Sangaka Area, Angren County, Tibet[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(5): 1323-1339.
[47] 来盛民,杨经绥,熊发挥,等. 西藏雅鲁藏布江缝合带泽当地幔橄榄岩的矿物化学和铂族元素特征[J]. 中国地质,2015, 42(5): 1515-1534. Lai Shengmin, Yang Jingsui, Xiong Fahui, et al. Mineral Chemistry and Platinum Group Characteristics of Mantle Peridotite in the Suture Zone of the Brahmaputra in Tibet[J]. Geology in China, 2015, 42(5): 1515-1534.
[48] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society of London Special Publications, 1989, 42: 313-345.
[49] Palme H, O’Neill H S C. Cosmochemical Estimates of Mantle Composition[C]// Carlson R W. The Mantle and Core, Treatise on Geochemistry. Amsterdam: Elsevier, 2003: 1-38.
[50] Schmidt G, Palme H, Kratz K L. Highly Siderophile Elements (Re, Os, Ir, Ru, Rh, Pd, Au) in Impact Melts from Three European Impact Craters (Sääksjärvi, Mien and Dellen): Clues to the Nature of the Impacting Bodies[J]. Geochimica et Cosmochimica Acta, 1997, 61(14):2977-2987.
[51] Mcdonough W F, Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
[52] Jiang Shaoyong, Yang Jinghong, Ling Hongfei, et al. Extreme Enrichment of Polymetallic Ni-Mo-PGE-Au in Lower Cambrian Black Shales of South China: An Os Isotope and PGE Geochemical Investigation[J]. Palaeogeography Palaeoclimatology Palaeoe-cology, 2007, 254(1/2): 217-228.
[53] 黎彤. 地壳元素丰度的若干统计特征[J]. 地质与勘探,1992, 28(10): 3-9. Li Tong. Some Statistical Characteristics of Element Abundance in Crust[J]. Geology and Exploration, 1992,28(10): 3-9.
[54] 刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京:科学出版社, 1984: 343-359. Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental Geochemistry[M]. Beijing: Science Press,1984: 343-359.
[55] 张成江,李晓林. 峨眉山玄武岩的铂族元素地球化学特征[J]. 岩石学报,1998, 14(3): 32-37. Zhang Chengjiang, Li Xiaolin.Geochemical Characteristics of Platinum Group Elements in the Basalt of Mount Emei[J]. Acta Petrologica Sinica, 1998, 14(3): 32-37.
[56] 倪善芹,侯泉林,琚宜文,等. 铂族元素作为地球化学指示剂有关问题讨论[J]. 地质论评,2007, 53(5): 631-641. Ni Shanqin, Hou Quanlin, Qu Yiwen, et al. Discussion on Platinum Group Elements as Geochemical Indicators[J]. Geological Review, 2007, 53(5): 631-641.
[57] 李胜荣,高振敏. 湘黔寒武系底部黑色岩系贵金属元素来源示踪[J]. 中国科学:D辑,2000, 30(2): 169-174. Li Shengrong, Gao Zhenmin. A Trace of the Origin of Precious Metals in the Black Rock System at the Bottom of Cambrian System in Hunan and Guizhou[J]. Science in China:Series D, 2000, 30(2): 169-174.
[58] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks[C]// The Continental Crust, Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell Scientific Publications, 1985: 1-312.
[59] 牛晓露,杨经绥,陈松永,等. 雅鲁藏布江西段东波超镁铁岩体经历了俯冲带流体的改造:来自铂族元素的证据[J]. 中国地质,2013, 40(3): 756-766. Niu Xiaolu, Yang Jingsui, Chen Songyong, et al. The Reformation of the Dongbo Ultramafic Rock Massif in the Western Part of the Yarlung Zangbo Suture Zone by Subduction-Related Fluids: Evidence from the Platimun Group Elements[J]. Geology in China, 2013, 40(3): 756-766.
[60] Terakado Y. Re-Os Dating of the Kuroko Ores from the Wanibuchi Mine, Shimane Prefecture, Southwestern Japan[J]. Geochemical Journal, 2001, 35(3): 169-174.
[61] Sun Xiaoming, Wang Shengwei, Sun Weidong, et al. PGE Geochemistry and Re-Os Dating of Massive Sulfide Ores from the Baimazhai Cu-Ni Deposit, Yunnan Province, China[J]. Lithos, 2008, 105(1/2): 12-24.
[62] Crocket J H. Nobel Metals in Seafloor Hydrothermal Mineralization from the Juna de Fuca and Middle-Altantic Ridges: A Fractionation of Gold from Platinum Metals in Hydrothermal Fluids[J]. Canadian Mineralogist, 1990, 28: 639-648.
[63] Barnes S, Naldrett A, Gorton M. The Origin of the Fractionation of Platinum Group Elements in Terrestrial Magmas[J]. Chemical Geology, 1985, 53(3): 303-323.
[64] Keays R R, Nickel E H, Groves D I, et al. Iridium and Palladium as Discriminants of Volcanic-Exhalative, Hydrothermal and Magmatic Nickel Sulfide Mineralization[J]. Economic Geology, 1982, 77(6): 1535-1547.
[65] 徐刚,汤中立,钱壮志,等. 金川镍铜铂硫化物矿床矿石成因:来自铂族元素地球化学的证据[J]. 世界地质,2012, 31(3): 493-504. Xu Gang, Tang Zhongli, Qian Zhuangzhi, et al. Ores Genesis in Jinchuan Ni-Cu-(PGE) Sulfide Deposit: Evidence from Geochemistry of Platinum Group Elements[J]. Global Geology, 2012, 31 (3): 493-504.
[66] Jiang Shaoyong, Yang Jinghong, Ling Hongfei, et al. Re-Os Isotopes and PGE Geochemistry of Black Shales and Intercalated Ni-Mo Polymetallic Sulfide Bed from the Lower Cambrian Niutitang Formation, South China[J]. Progress in Natural Science: Materials International, 2003, 13(10): 788-794.
[1] 张贵山, 邱红信, 温汉捷, 彭仁, 孟乾坤. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740-1752.
[2] 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769.
[3] 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852.
[4] 李天军, 黄志龙, 王瑞, 苟红光, 张品, 殷越. 银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2021, 51(4): 957-972.
[5] 史冬岩, 张坤, 张玉鹏, 高勇, 唐伟, 吕明奇. 黑龙江省浅覆盖区地物化特征与找矿标志——以黑河市340高地金矿化区为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1042-1053.
[6] 赵越, 刘敬党, 张国宾, 张艳飞. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1098-1118.
[7] 杨元江, 邓昌州, 李成禄, 张立, 高永志, 于喜洹. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1064-1081.
[8] 孙超, 苟军, 孙德有, 冯钊, 田丽. 黑龙江省西北部晚古生代I-A型花岗岩的成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1082-1097.
[9] 张雪, 翁凯, 赵晓健, 杜守礼, 尚颖. 新疆东天山卡拉塔格二叠纪火山岩成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1119-1138.
[10] 史冀忠, 牛亚卓, 许伟, 宋博, 王宝文. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693.
[11] 张超, 石绍山, 时溢, 魏明辉, 杨帆, 郇恒飞, 李文博, 王路远. 华北板块北缘东段中三叠世构造演化——来自辽宁法库地区侵入岩的证据[J]. 吉林大学学报(地球科学版), 2021, 51(3): 734-748.
[12] 田梦宇, 狄永军, 王帅, 贾一龙. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2021, 51(3): 749-766.
[13] 邓红宾, 李培龙, 魏华财, 何文劲, 杨鹏涛, 李宁, 唐华. 东昆仑造山带低山头花岗岩体岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 767-782.
[14] 康鹏宇, 刘传朋, 梁成, 冯爱平, 刘同, 宗传攀. 沂蒙山区土壤质量地球化学评价方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 877-886.
[15] 田兴旺, 罗冰, 孙奕婷, 刘冉, 李亚, 陈延贵, 周春林, 汪华, 李亚丁, 王尉, 王云龙, 杨岱林. 二叠系火山碎屑岩气藏天然气地球化学特征及气源分析——以四川盆地成都—简阳地区永探1井为例[J]. 吉林大学学报(地球科学版), 2021, 51(2): 325-335.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周燕,郑培玺,王铁夫,张延洁. 招平断裂带上盘金矿床氢氧同位素地质特征[J]. J4, 2007, 37(4): 668 -0671 .
[2] 高红梅,高福红,樊馥,高玉巧. 鸡西盆地早白垩世烃源岩可溶有机质地球化学特征[J]. J4, 2007, 37(1): 86 -0090 .
[3] 范晓敏,李舟波. 裂缝性碳酸盐岩储层声波时差曲线的波动和增幅分析[J]. J4, 2007, 37(1): 168 -0173 .
[4] 郭智奇, 刘财, 冯晅, 韩颜颜, 王晓欢. 各向异性衰减与AVO分析[J]. J4, 2010, 40(2): 432 -438 .
[5] 王福刚,廖资生. 应用 D、18O同位素峰值位移法求解大气降水入渗补给量[J]. J4, 2007, 37(2): 284 -287 .
[6] 时艳香,郝立波,陆继龙,纪宏金. 因子分类法在黑龙江塔河地区地质填图中的应用[J]. J4, 2008, 38(5): 899 -0903 .
[7] 徐波,孙卫. 姬塬油田长4+5砂岩储层孔隙类型与成岩作用[J]. J4, 2008, 38(6): 953 -0958 .
[8] 陈永良, 李学斌, 林楠. 遥感图像像素级异常识别的一种方法[J]. J4, 2012, 42(3): 881 -886 .
[9] 张世广, 柳成志, 卢双舫, 张雁, 吴高平, 刘秋宏. 高分辨率层序地层学在河、湖、三角洲复合沉积体系的应用--以朝阳沟油田扶余油层开发区块为例[J]. J4, 2009, 39(3): 361 -368 .
[10] 曾庆栋, 刘建明. 西拉沐伦钼矿带半拉山斑岩钼矿床花岗斑岩锆石SHRIMP U-Pb测年及其地质意义[J]. J4, 2010, 40(4): 828 -834 .