Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (1): 52-60.doi: 10.13278/j.cnki.jjuese.201501105

Previous Articles     Next Articles

Significance of Dissipated Soluble Organic Matter as Gas Source

Xue Haitao1, Tian Shansi1, Lu Shuangfang1, Liu Min2, Wang Weiming1, Wang Min1   

  1. 1. Research Institute of Unconventional Petroleum and New Energy Resources, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. Hunan Institute of Geology, Changsha 410007, China
  • Received:2014-05-05 Published:2015-01-26

Abstract:

With the gradual deepening of the natural gas generation and migration mechanism, the dissipated soluble organic matter, which was residual in the source rock and migrated outside the source rocks and didn't form the gathered oil and gas reservoirs in the evolutionary process of kerogen, is gradually getting more attention as a new gas source. The dispersed soluble organic matter into gas is not only related to the consumption of crude oil, but also related to the results of the natural gas resource evaluation, and thus the quantitative evaluation is of great significance to the oil and gas exploration. We summarized and compared the differences between traditional mode of hydrocarbon generation and the dissipated soluble organic matter into gas mode, and established a geological model of the dissipated soluble organic matter into gas, then gave a preliminary calculation of the dissipated soluble organic matter into gas in Tarim basin. And just because of the existence of this gas source, gas generation area is beyond the distribution range of hydrocarbon source rocks. Besides, for this reason, gas generation center migrates to high positions of structures and the period of gas generation is also been put off. By the calculation, the proportion of the dispersed soluble organic matter into gas in the Tarim basin between the source and outside source is 1 to 2.88. The volume of the oil-cracked gas, which is generated on the period between the Late Cretaceous and now days, is 799 hundred billion stere, which is 4.23 times of the traditional oil into gas mode.

Key words: dissipated soluble organic matter, geological model of gas generation outside source, oil-cracked gas, period of gas generation, Tarim basin

CLC Number: 

  • P618.13

[1] Tissot B P. Welte D H. Petroleum Formation and Occurrence[M]. New York:Spriner-Verlag, 1978.

[2] 卢双舫, 付晓泰, 王振平, 等. 油成气的动力学模型及其标定[J]. 天然气工业, 1996, 16(6):6-9. Lu Shuangfang, Fu Xiaotai, Wang Zhenping, et al. Kinetic Model of Oil-Formed Gas and Its Calibration[J]. Natural Gas Industry, 1996, 16(6):6-9.

[3] 赵文智, 王兆云, 张水昌, 等. 有机质"接力成气"模式的提出及其在勘探中的意义[J].石油勘探与开发, 2005, 32(2):1-7. Zhao Wenzhi, Wang Zhaoyun, Zhang Shuichang, et al. Successive Generation of Natural Gas from Organic Materials and Its Significance in Future Exploration[J]. Petroleum Exploration and Development, 2005, 32(2):1-7.

[4] 刘文汇, 张殿伟, 高波, 等.天然气来源的多种途径及其意义[J]. 石油与天然气地质, 2005, 26(4):393-401. Liu Wenhui, Zhang Dianwei, Gao Bo, et al. Multiple Origins of Natural Gas and Their Significance[J]. Oil and Gas Geology, 2005, 26(4):393-401.

[5] 赵文智, 王兆云, 王红军, 等. 不同赋存状态油裂解条件及油裂解型气源灶的正演和反演研究[J].中国地质, 2006, 33(5):952-965. Zhao Wenzhi, Wang Zhaoyun, Wang Hongjun, et al. Cracking Conditions of Oils Existing in Different Modes of Occurrence and Forward and Backward Inference of Gas Source Rock Kitchen of Oil Cracking Type[J]. Geology in China, 2006, 33(5):952-965.

[6] 赵文智, 王兆云, 张水昌, 等. 油裂解生气是海相气源灶高效成气的重要途径[J]. 科学通报, 2006, 51(5):589-595. Zhao Wenzhi, Wang Zhaoyun, Zhang Shuichang, et al. Oil Cracking:An Important Way for Highly Efficient Generation of Gas from Marine Source Rock Kitchen[J]. Chinese Science Bulletin, 2006, 51(5):589-595.

[7] 赵文智, 王泽成, 张水昌, 等. 中国叠合盆地深层海相油气成藏条件与富集区带[J]. 科学通报, 2007, 52(增刊1):9-18. Zhao Wenzhi, Wang Zecheng, Zhang Shuichang, et al. Analysis on Forming Conditions of Deep Marine Reservoirs and Their Concentration Belts in Superimposed Basins in China[J]. Chinese Science Bulletin, 2007, 52(Sup.1):9-18.

[8] 刘文汇, 张殿伟. 中国深层天然气形成及保存条件探讨[J]. 中国地质, 2006, 33(5):937-943. Liu Wenhui, Zhang Dianwei. Generation and Preservation Conditions of Deep-Seated Gas in China[J]. Geology in China, 2006, 33(5):937-943.

[9] 刘文汇, 张建勇, 范明, 等. 叠合盆地天然气的重要来源:分散可溶有机质[J]. 石油实验地质, 2007, 29(1):1-6. Liu Wenhui, Zhang Jianyong, Fan Ming, et al. Gas Generation Character of Dissipated Soluble Organic Matter[J]. Petroleum Geology & Experiment, 2007, 29(1):1-6.

[10] 王兆云, 赵文智, 张水昌, 等. 分散可溶有机质生气潜力与晚期成藏特征[C]//第二届中国石油地质年会:中国油气勘探潜力及可持续发展论文集.北京:中国地质学会石油地质专业委员会, 2006:562-563. Wang Zhaoyun, Zhao Wenzhi, Zhang Shuichang, et al. Characteristics of Gas Generation Potential and Accumulation in Late Stage of Dissipated Soluble Organic Matter[C]//The 2nd Annual Meeting of Chinese Association of Petroleum Geologists:Symposium of Chinese Oil and Gas Exploration Potential and Sustainable Development. Beijing:Petroleum Geology Professional Committee of Chinese Geology Society, 2006:562-563.

[11] 王兆云, 赵文智, 张水昌, 等. 深层海相天然气成因与塔里木盆地古生界油裂解气资源[J]. 沉积学报, 2009, 27(1):153-163. Wang Zhaoyun, Zhao Wenzhi, Zhang Shuichang, et al. Origin of Deep Marine Gas and Oil Cracking Gas Potential of Paleozoic Source Rocks in Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(1):153-163.

[12] 赵文智, 王兆云, 张水昌, 等. 不同地质环境下原油裂解生气条件[J]. 中国科学:D辑:地球科学, 2007, 37(增刊1):73-77. Zhao Wenzhi, Wang Zhaoyun, Zhang Shuichang, et al. Cracking Conditions of Crude Oil Under Different Geological Environments[J]. Science in China:Series D:Earth Sciences, 2008, 51(Sup.1):73-77.

[13] 范明, 刘文汇, 郑伦举, 等. 不同岩石中分散可溶有机质裂解成气特征[J]. 沉积学报, 2007, 25(5):774-777. Fan Ming, Liu Wenhui, Zheng Lunju, et al. Characteristics of Cracked Gas of Soluble Organic Matter Dispersed in Different Kinds of Rocks[J]. Acta Sedimentologica Sinica, 2007, 25(5):774-777.

[14] 赵文智, 王兆云, 王红军, 等. 再论有机质"接力成气"的内涵与意义[J]. 石油勘探与开发, 2011, 38(2):129-135. Zhao Wenzhi, Wang Zhaoyun, Wang Hongjun, et al. Further Discussion on the Connotation and Significance of the Natural Gas Relaying Generation Model from Organic Materials[J]. Petroleum Exploration and Development, 2011, 38(2):129-135.

[15] 卢双舫. 有机质成烃动力学理论及其应用[M]. 北京:石油工业出版社, 1996:62-74. Lu Shuangfang. Kinetics Theory of Hydrocarbon Generation from Organic Matter and Its Application[M]. Beijing:Petroleum Industry Press, 1996:62-74.

[16] 卢双舫, 薛海涛, 钟宁宁. 石油保存下限的化学动力学研究[J]. 石油勘探与开发, 2002, 29(6):1-3. Lu Shuangfang, Xue Haitao, Zhong Ningning. The Chemical Kinetic Study of the Oil Preservation Threshold[J]. Petroleum Exploration and Development, 2002, 29(6):1-3.

[17] 李明诚. 石油与天然气运移[M]. 北京:石油工业出版社, 2004:150-153. Li Mingcheng. The Migration of Oil and Natural Gas[M]. Beijing:Petroleum Industry Press, 2004:150-153.

[18] 高志勇, 张水昌, 张兴阳, 等. 塔里木盆地寒武奥陶系海相烃源岩空间展布与层序类型的关系[J]. 科学通报, 2007, 52(增刊1):70-77. Gao Zhiyong, Zhang Shuichang, Zhang Xingyang, et al. Relations Between Spatial Distribution and Sequence Types of the Cambrian-Ordovician Marine Source Rocks in Tarim Basin[J]. Chinese Science Bulletin, 2007, 52(Sup.1):70-77.

[19] 张水昌, 梁狄刚, 张宝民, 等. 塔里木盆地海相油气的生成[M]. 北京:石油工业出版社, 2004. Zhang Shuichang, Liang Digang, Zhang Baomin, et al. Marine Oil and Gas Genesis in Tarim Basin[M]. Beijing:Petroleum Industry Press, 2004.

[20] 薛海涛. 碳酸盐岩烃源岩评价标准研究. 大庆:大庆石油学院, 2004. Xue Haitao. Study of Carbonate Source Rocks Evaluation Criterion. Daqing:Daqing Petroleum Institute, 2004.

[21] Hindle A D.Petroleum Migration Pathways and Ch-arge Concentration:A Three-Dimensional Model[J]. AAPG Bulletin, 1997, 81(9):1451-1481.

[22] 李明诚. 油气运移基础理论与油气勘探[J]. 地球科学:中国地质大学学报, 2004, 29(4):379-383. Li Mingcheng. Basic Principles of Migration and Hydrocarbon Exploration[J]. Earth Science:Journal of China University of Geosciences, 2004, 29(4):379-383.

[23] 庞雄奇, 金之均, 姜振学, 等. 油气成藏定量模拟[M]. 北京:石油工业出版社, 2003:129-145. Pang Xiongqi, Jin Zhiyun, Jiang Zhenxue, et al. Quantitative Models of Hydrocarbon Accumulation[M]. Beijing:Petroleum Industry Press, 2003:129-145.

[1] Guo Chuntao, Li Ruyi, Chen Shumin. Rare Earth Element Geochemistry and Genetic Model of Dolomite of Yingshan Formation in Gucheng Area, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1121-1134.
[2] Li Wenqiang, Guo Wei, Sun Shouliang, Yang Xuhai, Liu Shuai, Hou Xiaoyu. Research on Hydrocarbon Accumulation Periods of Palaeozoic Reservoirs in Bachu-Maigaiti Area of Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 640-651.
[3] Li Ang, Ju Linbo, Zhang Liyan. Relationship Between Hydrocarbon Accumulation and Paleo-Mesozoic Tectonic Evolution Characteristics of Gucheng Lower Uplift in Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 545-555.
[4] Chen Feiran, Zhang Ying, Xu Zuxin, Tan Cheng, Zhou Xiaoxiao. Petroleum Geological Characteristics and Main Control Factors of Oil and Gas Accumulations in the Global Precambrian-Cambrian Petroliferous Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 974-989.
[5] Niu Jun, Huang Wenhui, Ding Wenlong, Jiang Wenlong, Zhang Yamei, Qi Lixin, Yun Lu, Lü Haitao. Carbon and Oxygen Isotope Characteristics and Its Significance of Ordovician Carbonates in Yubei Area of Maigaiti Slope [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 61-73.
[6] Du Zhili, Zeng Changmin, Qiu Haijun, Yang Youxing, Zhang Liang. Key Formations of the Permian Hydrocarbon Source Rocks and Oil-Source Correlation of well KD1 in Yecheng Depression of Southwestern Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 651-660.
[7] Zhao Yonggang, Chen Jingshan, Li Ling, Gu Yonghong, Zhang Chunyu, Zhang Dongliang, Zhang Wenqiang, Zhou Tong. Evaluation of Carbonate Reservoir Based on Residual Karst Intensity Characterization and Structural Fracture Prediction:A Case from the Upper Ordovician Lianglitage Formation in the West of Center Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 25-36.
[8] Tang Liangjie,Qiu Haijun,Yun Lu,Yang Yong,Xie Daqing,Li Meng, Jiang Huashan. Poly-Phase Reform-Late-Stage Finalization Composite Tectonics and Strategic Area Selection of Oil and Gas Resources in Tarim Basin,NW China [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 1-14.
[9] Zhou Bo,Qiu Haijun,Duan Shufu,Li Qiming,Wu Guanghui. Origin of Micro-Pores in the Upper Ordovician Carbonate Reservoir of the Central Tarim Basin,NW China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 351-359.
[10] Wang Xiaomin,Chen Zhaonian,Fan Tailiang,Yu Tengxiao,Cao Zicheng,He Hai. Integrated Reservoir Characterization of Late Carboniferous Carbonate Inner Platform Shoals in Bamai Region, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 371-381.
[11] GAO Zhi-qian, FAN Tai-liang, YANG Wei-hong, WANG Xin. Structure Characteristics and Evolution of the Eopaleozoic Carbonate Platform in Tarim Basin [J]. J4, 2012, 42(3): 657-665.
[12] ZHANG Wei, LEI Gang-lin, SHI Jun, ZENG Chang-min, DU Zhi-li, CHEN Cai. Positive Inversion Structure in Fusha Structure Zone of Southwest Depression of Tarim Basin and Its Significance to Petroleum Geology [J]. J4, 2012, 42(3): 681-688.
[13] GUO Qian, PU Ren-hai. Interpretation of Carboniferous Low Velocity Anomalous Carbonate in the Ba-Mai Area, Tarim Basin [J]. J4, 2011, 41(3): 689-696.
[14] ZHANG Yun-bo, ZHAO Zong-ju, YUAN Sheng-qiang, ZHENG Min. Application of Spectral Analysis to Identify Milankovitch Cycles and High-Frequency Sequences-Take The Lower Ordovician Yingshan Formation of Mid-Tarim Basin as An Example [J]. J4, 2011, 41(2): 400-410.
[15] SUN Lin-hua. Geochemical Inversion of the Wajilitag Ultramafic Rocks in Tarim Basin, NW China [J]. J4, 2010, 40(6): 1301-1310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!