Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (3): 920-929.doi: 10.13278/j.cnki.jjuese.201603306

Previous Articles     Next Articles

Factor Analysis of Seismic Modeling with Topography Based on a Fully Staggered Body-Fitted Grids

Li Qingyang1, Li Zhenchun1, Huang Jianping1, Li Na2, Su Zairong3   

  1. 1. School of Geoscience, China University of Petroleum(East china), Qingdao 266580, Shangdong, China;
    2. Geophysical Exploration Research Institute of Zhongyuan Oilfield Company, Puyang 457001, Henan, China;
    3. Nantong Municipal Statistics Bureau, Nantong 226000, Jiangsu, China
  • Received:2015-09-01 Online:2016-05-26 Published:2016-05-26
  • Supported by:

    Supported by the State Key Development Program for Basic Research of China (2011CB202402), the National Natural Science Foundation of China (41274124) and the Fundamental Research Funds for the Central Universities (14CX06072A)

Abstract:

Finite-difference forward modeling method with body-fitted can accurately simulate wavefields in presence of topography, meanwhile, the computational efficiency is relatively high. Therefore, it is a prospecting method for dealing with the western complex surface. The collocated-grid and standard staggered grid are often used to solve wave equation. However, they show many problems when the above two grids are extend to body-fitted grids. By introducing the fully-staggered grid to curvilinear coordinates, the proposed method can avoid not only the interpolation error when standard staggered grid are used, but also the high-frequency oscillations with the collocated-grid. Thus, it can improve the simulation accuracy and reduce the complexity of the algorithm degrees. To satisfy the free surface boundary condition, we use the traction image method to calculate the velocity components, the method also uses the velocity of free boundary conditions with compact staggered difference format to update the stress components. Model tests show that the proposed method can obtain the good results. And then, we mainly study the influence factors of forward modeling algorithm by a fully staggered body-fitted grids, such as, the orthogonality of grids, the grid spacing change, and the skewness of meshes.Finally, we obtain some conclusions as follows:the algorithm is not sensitive to the orthogonality of grids;the grid spacing changing can lead to false reflection;the result of simulation is not affected by the skewness of different types of grids.

Key words: irregular free surface, body-fitted grid, full staggered-grid, forward modeling, factors

CLC Number: 

  • P631.4

[1] 张华,李振春,韩文功.起伏地表条件下地震波数值模拟方法综述[J].勘探地球物理进展,2007,30(5):334-339. Zhang Hua, Li Zhenchun, Han Wengong. Review of Seismic Wave Numerical Simulation from Irregular Topography[J]. Progress in Exploration Geophysics, 2007, 30(5):334-339.

[2] 孙建国.复杂地表条件下地球物理场数值模拟方法评述[J].世界地质,2007,26(3):345-362. Sun Jianguo. Methods for Numerical Modeling of Geophysical Fields Under Complex Topographical Conditions:A Critical Review[J]. Global Geology, 2007, 26(3):345-362.

[3] 裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J]. 石油地球物理勘探,2004,39(6):629-634. Pei Zhenglin. Numerical Modeling Using Staggered-Grid High-Order Finite-Difference of Elastic Wave Equation on Arbitrary Relief Surface[J]. Oil Geophysical Prospecting, 2004, 39(6):629-634.

[4] 王雪秋,孙建国.地震波有限差分数值模拟框架下的起伏地表处理方法综述[J]. 地球物理学进展,2008, 23(1):40-48. Wang Xueqiu, Sun Jianguo. The State-of-the-Art in Numerical Modeling Including Surface Topography with Finite-Difference Method[J]. Progress in Geophysics, 2008, 23(1):40-48.

[5] 王秀明,张海澜.用于具有不规则起伏自由表面的介质中弹性波模拟的有限差分算法[J].中国科学:G辑:物理学、力学、天文学, 2004, 34(5):481-493. Wang Xiuming, Zhang Hailan. Modeling the Seismic Wave in the Media with Irregular Free Interface by the Finite-Difference Method[J]. Science in China:Series G:Physica, Mechanica and Astronomica, 2004, 34(5):481-493.

[6] 郭振波,李振春.起伏地表条件下频率-空间域声波介质正演模拟[J].吉林大学学报(地球科学版),2014, 44(2):683-693. Guo Zhenbo, Li Zhenchun. Acoustic Wave Modeling in Frequency-Spatial Domain with Surface Topography[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(2):683-693.

[7] 李振春,李庆洋,黄建平,等. 一种稳定的高精度双变网格正演模拟与逆时偏移方法[J]. 石油物探, 2014, 53(2):127-136. Li Zhenchun,Li Qingyang,Huang Jianping,et al. A Stable and High-Precision Dual-Variable Grid Forward Modeling and Reverse Time Migration Method[J]. Geophysical Prospecting for Petroleum, 2014, 53(2):127-136.

[8] Hestholm S, Ruud B. 2-D Finite-Difference Elastic Wave Modeling Including Surface Topography[J]. Geophysical Prospecting, 1994, 42:371-390.

[9] 董良国,郭晓玲,吴晓丰,等.起伏地表弹性波传播有限差分法数值模拟[J]. 天然气工业,2007, 27(10):38-41. Dong Liangguo, Guo Xiaoling, Wu Xiaofeng,et al. Finite Difference Numerical Simulation for the Elastic Wave Propagation in Rugged Topography[J]. Natural Gas Industry. 2007, 27(10):38-41.

[10] Tarrass I,Giraud L,Thore P.New Curvilinear Scheme for Elastic Wave Propagating in Presence of Curved Topography[J]. Geophysical Prospecting, 2011,59:889-906.

[11] Fornberg B. The Pseudo-Spectral Method:Accurate Repre-sentation in Elastic Wave Calculations[J]. Geophysics, 1988, 53:625-637.

[12] Komatitsch D, Coute F, Mora P. Tensorial Formulation of the Wave Equation for Modelling Curved Interfaces[J]. Geophysical Journal International, 1996, 127:156-168.

[13] Zhang W, Chen X. Traction Image Method for Irregular Free Surface Boundaries in Finite Difference Seismic Wave Simulation[J]. Geophysical Journal International, 2006, 167:337-353.

[14] Zhang W, Shen Y, Zhao L. Three-Dimensional Aniso-tropic Seismic Wave Modelling in Spherical Coordinates by a Collocated-Grid Finite-Difference Method[J]. Geophysical Journal International, 2012, 188:1359-1381.

[15] 祝贺君,张伟,陈晓非.二维各向异性介质中地震波场的高阶同位网格有限差分模拟[J].地球物理学报, 2009, 52(6):1536-1546. Zhu Hejun, Zhang Wei, Chen Xiaofei. Two-Dimensional Seismic Wave Simulation in Anisotropic Media by Non-Staggered Finite-Difference Method[J]. Chinese Journal of Geophysics, 2009, 52(6):1536-1546.

[16] Appelo D, Petersson N A. A Stable Finite Difference Method for the Elastic Wave Equation on Complex Geometries with Free Surfaces[J]. Communications in Computational Physics, 2009, 5:84-107.

[17] 兰海强,刘佳,白志明.VTI介质起伏地表地震波场模拟[J]. 地球物理学报,2011, 54(8):2072-2084. Lan Haiqiang, Liu Jia, Bai Zhiming. Wave-Field Simulation in VTI Media with Irregular Free Surface[J]. Chinese Journal of Geophysics, 2011, 54(8):2072-2084.

[18] 丘磊,田钢,石战结, 等.起伏地表条件下有限差分地震波数值模拟:基于广义正交曲线坐标系[J].浙江大学学报(工学版), 2012,46(10):1923-1930. Qiu Lei, Tian Gang, Shi Zhanjie, et al. Finite-Difference Method for Seismic Wave Numerical Simulation in Presence of Topography:In Generally Orthogonal Curvilinear Coordinate System[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(10):1923-1930.

[19] Rao Y, Wang Y H. Seismic Waveform Simulation with Pseudo-Orthogonal Grids for Irregular Topographic Models[J]. Geophysical Journal International, 2013, 194:1778-1788.

[20] 孙建国,蒋丽丽. 用于起伏地表条件下地球物理场数值模拟的正交曲网格生成技术[J]. 石油地球物理勘探, 2009, 44(4):494-500. Sun Jianguo, Jiang Lili. Orthogonal Curvilinear Grid Generation Technique Used for Numeric Simulation of Geophysical Fields in Undulating Surface Condition[J]. Oil Geophysical Prospecting, 2009, 44(4):494-500.

[21] 蒋丽丽,孙建国. 基于Poisson方程的曲网格生成技术[J].世界地质, 2008, 27(3):298-305. Jiang Lili, Sun Jianguo. Source Terms of Elliptic System in Grid Generation[J]. Global Geology, 2008, 27(3):298-305.

[22] Lisitsa V,Vishnevskiy D.Lebedev Scheme for the Nume-rical Simulation of Wave Propagation in 3D Anisotropic Elasticity Double Dagger[J]. Geophysical Prospecting, 2010, 58:619-635.

[23] 李娜,黄建平,李振春,等. Lebedev网格改进差分系数TTI介质正演模拟方法研究[J]. 地球物理学报,2014, 57(1):261-269. Li Na, Huang Jianping, Li Zhenchun, et al. The Study on Numerical Simulation Method of Lebedev Grid with Dispersion Improvement Coefficients in TTI Media[J]. Chinese Journal of Geophysics, 2014, 57(1):261-269.

[24] 李庆洋,黄建平,李振春,等.起伏地表贴体全交错网格仿真型有限差分正演模拟[J].石油地球物理勘探,2015, 50(4):633-642. Li Qingyang, Huang Jianping, Li Zhenchun, et al. Undulating Surface Body-Fitted Grid Seismic Modeling Based on Fully Staggered-Grid Mimetic Finite Difference[J]. Oil Geophysical Prospecting, 2015, 50(4):633-642.

[1] Chen Aimin. Hydrocarbon Accumulation Condition and Controlling Factors of Block WA-406-P in Bonaparte Basin, Australia [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 965-980.
[2] Sun Chao, Shao Yanhong, Wang Handong. Research Progress and Thinking on Horizontal Frost Heaving Force and Retaining Structure [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 784-798.
[3] Feng Xiaolong, Ao Weihua, Tang Xuan. Characteristics of Pore Development and Its Main Controlling Factors of Continental Shale Gas Reservoirs: A Case Study of Chang 7 Member in Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 678-692.
[4] Sun Haitao, Zhong Dakang, Li Yong, Mao Yakun, Yang Xianzhang. Porosity Origin and Controlling Factors of Ultra-Deep, Low Porosity and Ultra-Low Permeability Sandstone Reservoirs: A Case Study of Bashijiqike Formation in Keshen Area of Kuqa Depression, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 693-704.
[5] Li Jianping, Weng Aihua, Li Shiwen, Li Dajun, Li Sirui, Yang Yue, Tang Yu, Zhang Yanhui. 3-D Forward Method for Geomagnetic Depth Sounding Based on Finite Difference Method in Spherical Coordinate [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 411-419.
[6] Zheng Guodong, Qin Jianxun, Fu Wei, Yang Zhiqiang, Zhao Xinjin, Lu Bingke. Influencing Factors on Distribution and Accumulation of Arsenic in Topsoil in Beibu Gulf of Guangxi [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 181-192.
[7] An Zhenfang, Zhang Jin, Zhang Jianzhong. Geometry Optimization Design of Three Dimensional Marine Vertical Cable [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 271-284.
[8] Weng Aihua, Li Sirui, Yang Yue, Li Dajun, Li Jianping, Li Shiwen. Basic Principle, Current Status and Prospect of Magnetometric Resistivity [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1838-1854.
[9] Gao Chonglong, Ji Youliang, Jin Jun, Wang Jian, Ren Ying, Che Shiqi, Wang Ru, Huan Zhijun. Characteristics and Controlling Factors on Physical Properties of Deep Buried Favorable Reservoirs of the Qingshuihe Formation in Muosuowan Area, Junggar Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 990-1006.
[10] Qu Changsheng, Qiu Longwei, Li Wentao, Shi Zheng, Wang Wei. Characteristics and Controlling Factors of the Intermediate and Mafic Volcanic Reservoirs of the Paleogene Kongdian Formation in the Weibei Sag of the Bohaiwan Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1284-1296.
[11] Liu Zhaojun, Sun Pingchang, Liu Rong, Meng Qingtao, Hu Fei. Research on Oil Shale Features and Metallogenic Differences in Dunhua-Mishan Fault Zone Basins [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1090-1099.
[12] Shi Xuefa, Li Bing, Yan Quanshu, Ye Jun. Hydrothermal Activities and Mineralization in the Arc and Back-Arc Basin Systems, Western Pacific [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1124-1138.
[13] Dong Deming, Cao Zhen, Yan Zhengchu, Hua Xiuyi, Zhu Lei, Xu Yang, Guo Zhiyong, Liang Dapeng. Treatment Research of Polyvinyl Alcohol Wastewater by Ozone/Ultrasound Oxidation Process [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1191-1198.
[14] Liu Haifei, Liu Jie, Gao Han, Guo Rongwen, Tong Xiaozhong, Ma Changying. 3D Finite Element Forward Modeling of Five-Pole Longitude Induced Polarization Sounding [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 884-892.
[15] Yin Changchun, Qiu Changkai, Liu Yunhe, Cai Jing. Weighted Laterally-Constrained Inversion of Time-Domain Airborne Electromagnetic Data [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 254-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!