Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (6): 1810-1820.doi: 10.13278/j.cnki.jjuese.20170137

Previous Articles    

Influence of Surface Irrigation Practices on Iodine Mobilization in Sedimentary Aquifers

Zhou Hailing1,2, Su Chunli1,2, Li Junxia1,2   

  1. 1. School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
    2. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
  • Received:2018-09-07 Published:2018-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41502230) and Natural Science Foundation of Hubei Pro-vince (2015CFB554)

Abstract: Surface irrigation and other agricultural activities cause the input of exogenous materials, such as nitrate, organic matter and so on, which will lead to seasonal fluctuations in the shallow sedimentary aquifers. In this study, the iodine-rich sediments were selected to explore the influence of irrigation practice on iodine mobilization and accumulation in shallow groundwater system. The results show that under the anaerobic conditions, the reduction of iron mineral phase will be promoted by microbes using organic matter as electron donor because of the input of exogenous organic matter. This process can lead to iodine release into the liquid phase from iron oxide/hydroxide surface, mainly in the form of iodine ion in groundwater. With extra NO3- input, Fe(Ⅲ) will be reduced to Fe(Ⅱ) until nitrate is consumed completely by microbes using NO3- as electron acceptor. The input of exogenous substances by human activities is favorable for the iodine release from solid into shallow groundwater. Iron phase adsorbed by Illite may be the main carrier of solid iodine in shallow aquifers. Under the action of microorganisms, the reductive dissolution of solid Fe is the main controlling factor for release of solid iodine, thereby forming high iodine groundwater in shallow aquifers.

Key words: iodine, Shewanella oneidensis MR-1, nitrate, organic matter, microbial

CLC Number: 

  • P641.69
[1] 陈祖培. 中国控制碘缺乏病的对策[M]. 天津:天津科学技术出版社, 2002. Chen Zupei. Tactics of IDD Control in China[M]. Tianjin:Science & Technology Press, 2002.
[2] Swewart A G, Carter J, Parker A, et al. The Illusion of Environmental Iodine Deficiency[J]. Environmental Geochemistry and Health, 2003, 25(1):165-170.
[3] Andersen S, Iversen F, Terpling S, et al. Iodine Deficiency Influences Thyroid Autoimmunity in Old Age:A Comparative Population-Based Study[J]. Maturitas, 2012, 71:39-43.
[4] Laurberg P, Cerqueira C, Ovesen L, et al. Iodine Intake as a Determinant of Thyroid Disorders in Populations[J]. Best Pract Res Clin Endocrinol Metab, 2010, 24:13-27.
[5] 徐芬, 马腾, 石柳, 等. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012, 39(5):8-15. Xu Fen, Ma Teng, Shi Liu, et al. Hydrogeochemical Characteristics of High Iodine Groundwater in the Hetao Plain, Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2012, 39(5):8-15.
[6] Andersen S,Bruun N H, Pedersen K M, et al. Biologic Variation is Important for Interpretation of Thyroid Function Tests[J]. Thyroid, 2003, 13(11):1069-1078.
[7] 申红梅, 张树彬, 苏晓辉, 等. 全国高碘水地区地理分布及高碘地区水碘等值线研究[J]. 中国地方病学杂志, 2007, 26(6):294-296. Shen Hongmei, Zhang Shubin, Su Xiaohui, et al. The Distribution of High Iodine Water and the Research Isogram of High Iodine Water[J]. Chinese Journal of Endemiology, 2007, 26(6):294-296.
[8] Andersen S, Guan H, Teng W. Speciation of Iodine in High Iodine Groundwater in China Associated with Goiter and Hypothyroidism[J]. Biological Trace Element Research, 2009, 128(2):95-103.
[9] Shimamoto Y S, Takahashi Y, Terada Y. Formation of Organic Iodine Supplied as Iodine in a Soil-Water System in Chiba, Japan[J]. Environmental Science & Technology, 2011, 45(6):2086-2092.
[10] 李俊霞. 大同盆地高碘地下水系统地球化学研究[D]. 武汉:中国地质大学, 2014. Li Junxia. Geochemistry of High Iodine Groundwater System of Datong Basin, Northern China[D]. Wuhan:China University of Geosciences, 2014.
[11] 徐清, 刘晓端, 汤奇峰, 等. 山西晋中地区地下水高碘的地球化学特征研究[J]. 中国地质, 2010, 37(3):809-815. Xu Qing, Liu Xiaoduan, Tang Qifeng, et al. High Iodine Geochemical Characteristics of the Groundwater in Central Shanxi Province[J]. Geology in China, 2010, 37(3):809-815.
[12] 水源性高碘地区和地方性高碘甲状腺肿病区的划定GB/T19380-2003[S]. 北京:中国标准出版社, 2004. Datermination and Classification of the Areas of High Water Iodine and the Endemic Areas of Iodine Excess Goiter GB/T19380-2003[S]. Beijing:Standard Press of China, 2004.
[13] Jia Y F, Guo H M, Xi B D, et al. Sources of Groundwater Salinity and Potential Impact on Arsenic Mobility in the Western Hetao Basin, Inner Mongolia[J]. Science of the Total Environment, 2017, 601/602:691-702.
[14] Guo H M, Wen D G, Liu Z Y, et al. AReview of High Arsenic Groundwater in Mainland and Taiwan, China:Distribution, Characteristics and Geochemical Processes[J]. Applied Geochemistry, 2014,41(1):196-217.
[15] Wen D G, Zhang F C, Zhang E Y, et al. Arsenic,Fluoride and Iodide in Groundwater of China[J]. Journal Geochemical Exploration, 2013, 135:1-21.
[16] 张二勇, 张福存, 钱永, 等. 中国典型地区高碘地下水分布特征及启示[J]. 中国地质, 2010, 37(3):797-802. Zhang Eryong, Zhang Fucun, Qian Yong, et al. The Distribution of High Iodine Groundwater in Typical Areas of China and Its Inspiration[J]. Geology in China, 2010, 37(3):797-802.
[17] Hu Q, Zhao P, Moran J E, et al. Sorption and Transport of Iodine Species in Sediments from the Savannah River and Hanford Sites[J]. J Contam Hdrol, 2005, 78:185-205.
[18] Yamaguchi N, Nakano M, Takamatsu R, et al. InorganicIodine Incorporation into Soil Organic Matter:Evidence from Iodine K-Edge X-Ray Absorption Near-Edge Structure[J]. J Environ Radioact, 2010, 101:451-457.
[19] Qtosaka S, Schwehr K A, Kaplan D I, et al. Factors Controlling Mobility of 127I and 129I Species in an Acidic Groundwater Plume at the Savannah River Site[J]. Sci Total Environ, 2011, 409:3857-3865.
[20] Li J X, Wang Y X, Guo W, et al. Iodine Mobilization in Groundwater System at Datong Basin, China:Evidence from Hydrochemistry and Fluorescence Characteristics[J]. Science of the Total Environment, 2014, 468/469:738-745.
[21] Pedersen H D, Postma D, Jakobsen R. Release of Arsenic Associated with the Reduction and Transformation of Iron Oxides[J]. Geochim, Cosmochim, Acta, 2006, 70(16):4116-4129.
[22] Dixit S, Hering J G. Comparison of Arsenic(V) and Arsenic(Ⅱ) Sorption onto Iron Oxide Minerals:Implications for Arsenic Mobility[J]. Environ Sci Technol, 2003, 37(18):4182-4189.
[23] Kneebone P E,O'Day P A, Jones N, et al. Depo-sition and Fate of Arsenic in Iron and Arensic-Enriched Reservoir Sediments[J]. Environ Sci Technol, 2002, 36(3):381-386.
[24] André B, Francis G, Philippe B, et al. Decoupling of Arsenic and Iron Release from Ferrihydrite Suspension Under Reducing Conditions:A Biogeochemical Model[J]. Geochemical Transactions, 2007, 8:1-18.
[25] 王荣元. 大洋水和九龙江口沉积物中碘的地球化学[D]. 厦门:厦门大学, 2014. Wang Rongyuan. The Geochemistry of Iodine in Ocean Water and the Jiujiang River Estuarine Sediment[D]. Xiamen:Xiamen University, 2014.
[26] Dowdle P R, Laverman A M, Oremland R S. Bac-terial Dissimilatory Reduction of Arsenic(V) to Arsenic(Ⅲ) in Anoxic Sediments[J]. Applied and Environmental Microbiology, 1996, 62(5):1664-1669.
[27] Gibney B P, Nusslein K. Arsenic Sequestration by Nitrate Respiring Microbial Communities in Urban Lake Sediments[J]. Chemosphere, 2007, 70(2):329-336.
[28] Sun W J, Sierra-Alvarez R, Milner L, et al. Arsenite and Ferrous Iron Oxidation Linked to Chemolithotrophic Denitrification for the Immobilization of Arsenic in Anoxic Environments[J]. Environmental Science & Technology, 2009, 43(17):6585-6591.
[29] Radlinger G, Heumann K G. Transformation of Iodine in Natural and Wastewater Systems by Fixation on Humic Substances[J]. Environmental Science & Technology, 2000, 34:3932-3936.
[30] Eusterhues K, Wanger F E, Haeusler W, et al. Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-Ray Diffraction and Mossbauer Spectroscopy[J]. Environmental Science & Technology, 2008, 42:7891-7897.
[31] 邓娅敏. 河套盆地西部高砷地下水系统中的地球化学过程研究[D]. 武汉:中国地质大学, 2008. Deng Yamin. Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin[D]. Wuhan:China University of Geosciences, 2008.
[32] Li J X, Wang Y X, Xie X J. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and Its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China[J]. Science of the Total Environment, 2016, 544:158-167.
[33] 董维红, 孟莹, 王雨山, 等. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2):542-553. Dong Weihong, Meng Ying, Wang Yushan, et al. Hydrochemical Characteristics and Formation of the Shallow Groundwater in Fujin, Sanjiang Plain[J]. Journal of Jinlin University (Earth Science Edition), 2017, 47(2):542-553.
[34] Li J X, Wang Y X, Xie X J, et al. Effects of Water-Sediment Interaction and Irrigation Practices on Iodine Enrichment in Shallow Groundwater[J]. Journal of Hydrology, 2016, 543:293-304.
[35] Amachi S, Kamagata Y, Kanagawa T, et al. Bacteria Mediate Methylation of Iodine in Marine and Terrestrial Environments[J]. Appl Environ Microbiol, 2001, 67(6):2718-2722.
[36] Duan M, Xie Z, Wang Y, et al. Microcosm Studies on Iron and Arsenic Mobilization from Aquifer Sediments Under Different Conditions of Microbial Activity and Carbon Source[J]. Environmental Geology, 2009, 57:997-1003.
[37] 张丽萍, 谢先军, 李俊霞, 等. 大同盆地地下水中砷形态、分布及其富集过程研究[J]. 地质科技情报, 2014, 33(1):178-184. Zhang Liping, Xie Xianjun, Li Junxia, et al. Spatial Variation, Speciation and Enrichment of Arsenic in Groundwater from the Datong Basin, Northern China[J]. Geological Science and Technology Information, 2014, 33(1):178-184.
[38] Li J X, Xie X J, Su C L. Hierarchical Cluster Analysis of Arsenic and Fluoride Enrichments in Groundwater from the Datong Basin, Northern China[J]. J Geochem Explor, 2012, 118:77-89.
[39] 周海玲, 苏春利, 李俊霞,等. 大同盆地沉积物REE分布特征及其对碘富集的指示[J].地球科学, 2017, 42(2):298-306. Zhou Hailing, Su Chunli, Li Junxia, et al. Characteristics of Rare Earth Elements in the Sediments of the Datong Basin and Its Indication to the Iodine Enrichment[J]. Earth Science, 2017, 42(2):298-306.
[40] Lovley D R, Phillips E J P. Organic Matter Minera-lization with Reduction of Ferric Iron in Anaerobic Sediments[J]. Applied and Environmental Microbiology, 1986, 51(4):683-689.
[41] Lovley D R, Phillips E J P. Rapid Assay for Mic-robially Reducible Ferric Iron in Aquatic Sediments[J]. Applied and Environmental Microbiology, 1987, 53(7):1536-1540.
[42] Seabaugh J L, Dong H L, Kukkadapu P K, et al. Microbial Reduction of Fe(Ⅲ) in the Fithian and Muloorian Illites:Contrasting Extents and Rates of Bioreduction[J]. Clays and Clay Minerals, 2006, 54(1):67-79.
[43] Amstaetter K, Borch T, Larese-Casanova P. Redox Transformation of Arsenic by Fe(Ⅱ)-Activated Goethite (Alpha-FeOOH)[J]. Environ Sci Technol, 2010, 44(1):102-108.
[44] 陈立乔, 魏复盛. 中国土壤中溴、碘的背景含量[J]. 干旱环境监测, 1991, 5(2):65-69. Chen Liqiao, Wei Fusheng. The Background Value of Bromon and Iodine in China Soils[J]. Aird Environmental Monitoring, 1991, 5(2):65-69.
[45] Johnson C C. Database of the Iodine Content of Soils Populated with Data from Published Literature[EB/OL].[2016-07-06] . http://nora.nerc.ac.uk/id/eprint/10725.
[1] Yang Xiaoping, Zhang Wenlong, Wang Yan, Tan Hongyan. Organic Matter Evaluation of Source Rocks in Middle Jurassic Northern Mohe Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1635-1644.
[2] Li Zhiming, Zhang Jun, Bao Yunjie, Cao Tingting, Xu Ershe, Rui Xiaoqing, Chen Hongyu, Yang Qi, Zhang Qingzhen. Characteristics of Petrology and Pore Configuration of Lacustrine Source Rock Rich in Organic Matter from the First Member of Shahejie Formation in Bonan Sag, Zhanhua Depression: A Case Study on Well Luo 63 and Yi 21 Cored Interval [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 39-52.
[3] Zhang Yuling, Si Chaoqun, Chen Zhiyu, Chu Wenlei, Chen Zaixing, Wang Huang. Spatial Variability of Soil Nitrate Nitrogen and Its Influencing Factors [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 241-251.
[4] Lou Junfang, Tang Jie, Song Yang. Electroactivity of Cathodic Biofilm in Single Chamber, Membraneless Microbial Electrolysis Cell [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1247-1254.
[5] Zhou Gang, Zheng Rongcai, Zhao Gang, Wen Huaguo, Wen Longbin. Characteristics, Origin and Geological Significance of Oncolites of Givetian(Middle Devonian) in Ganxi Area, Northwestern Sichuan [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 405-417.
[6] Li Yumei, Luo Mingqi, Pan Guoyong, Tao Qianye. Centrifugation Effect on the Functional Diversity of Microbial Community in Fallen Leaves Displaying in BIOLOG Micro-Plates [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1198-1204.
[7] Su Xiaosi, Meng Xiangfei, Zhang Wenjing, Shi Xufei, He Haiyang. Change of the Groundwater Microbial Community During Artificial Recharge Process [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 573-583.
[8] Song Zhiwei, Wang Qiuxu, Ning Tingting, Ren Nanqi, Li Lixin. Influence of Microbial Flocculant Dosing Way on Performance of Aerobic Granules [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 247-254.
[9] Xue Haitao, Tian Shansi, Lu Shuangfang, Liu Min, Wang Weiming, Wang Min. Significance of Dissipated Soluble Organic Matter as Gas Source [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 52-60.
[10] Zhang Jiaming, Xu Zemin. A Dye Tracer Experiment to Study Macropore Flow Paths in Unsaturated Zone Under Different Vegetation Communities in Maka Mountain, China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1922-1935.
[11] Zhao Xiaobo,Xie Xue,Li Ying,Ma Zhen,Li Xuqian,Fan Kai. Blocking Capacity of Aquitard for Nitrate at Different Eh [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1603-1607.
[12] Li Yueming,Kang Chunli, Zhang Yingxin,Ming Lian,Zhang Sai, Guo Ping. Dissolved Organic Matter Effect on Pb Leaching and Release in the Pb Contaminated Soil Dealt with Freeze-Thaw Action [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 945-953.
[13] ZHANG Lan-ying, ZHANG Xue-qing, REN He-jun, DAI Huan-fang, LI Yan, ZHU Yan. Techniques of Bioleaching and Flooding the Shale Oil: A Review [J]. J4, 2011, 41(5): 1562-1572.
[14] SONG Zhi-wei, CHENG Xiao-xia, QIAO Yan-yun, PAN Yu, LUO Ke-ji. Influence of Seed Sludge on the Reactivation of Aerobic Sludge Granular After Storage [J]. J4, 2011, 41(3): 873-878.
[15] DONG Jun, XU Chao, SUN Yan, SUN Yue, SUN Hui-sen. Influences of NO-3|PO3-4 and SO2-4 on Bacterial Activity at Landfill Leachate Polluted Site [J]. J4, 2009, 39(6): 1122-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!