Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (2): 431-441.doi: 10.13278/j.cnki.jjuese.201702109

Previous Articles     Next Articles

Influence and Its Revelation of Oil Shale In-Situ Mining Simulation in Different Boundary Conditions

Ma Zhongliang1,2,3,4, Zheng Lunju1,2,3,4, Zhao Zhongxi1,4   

  1. 1. Wuxi Research Institute of Petroleum Geology, Exploration and Production Research Institute, Sinopec, Wuxi 214126, Jiangsu, China;
    2. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi 214126, Jiangsu, China;
    3. State Energy Center for Shale Oil Research and Development, Wuxi 214126, Jiangsu, China;
    4. Key Laboratory of Petroleum Accumulation Mechanisms, Sinopec, Wuxi 214126, Jiangsu, China
  • Received:2016-07-07 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by Basic and Prospective Research Program of Sniopec (P13047) and Science and Technology Development Project of Sniopec (P14040)

Abstract: With the hydrocarbon generation and expulsion simulation technology of source rock, a series of experiments of oil shale in-situ mining simulation was made under different boundary conditions such as heating temperature, heating rate, constant heating time, and water content. The results indicated that increasing conversion temperature and decreasing heating ramp rate, prolonging constant temperature time were conducive to improve shale oil yield and its quality of oil shale in-situ mining. Fluid pressure decreased shale oil rate, but slightly improved oil quality, but excessive fluid pressure, such as over exploitation layer overburden pressure, will have a destructive effect on surface engineering. High temperature formation water may act as catalyst, reactant and solvent in the reaction, promote non covalent bond fracture, and improve oil yield. Based on the results, a new method was proposed that during the dry distillation conversion process offering additional hydrogen material, or adding soluble catalystsin to the high temperature water, may improve shale oil yield of oil shale in-situ mining.

Key words: oil shale, different boundary conditions, in-situ mining, simulation experiment, shale oil

CLC Number: 

  • P618.12
[1] 王红岩,赵群,刘洪林,等.中国油页岩资源分布及技术进展[M].北京:石油工业出版社,2013. Wang Hongyan, Zhao Qun, Liu Honglin, et al. The Distribution and Advances in Production Technologies of Oil Shale in China[M]. Beijing:Petroleum Industry Press, 2013.
[2] 刘招君,杨虎林,董清水,等.中国油页岩[M].北京:石油工业出版社,2009. Liu Zhaojun, Yang Hulin, Dong Qingshui, et al. Oil Shale in China[M]. Beijing:Petroleum Industry Press, 2009.
[3] 钱家麟,王剑秋,李术元.世界油页岩资源利用和发展趋势[J]. 吉林大学学报(地球科学版), 2006,36(6):877-887. Qian Jialin, Wang Jianqiu, Li Shuyuan. World Oil Shale Utilization and Its Future[J]. Journal of Jilin University(Earth Science Edition),2006,36(6):877-887.
[4] 孙友宏,邓孙华,王洪艳.国际油页岩开发技术与研究进展:记第33届国际油页岩会议[J].吉林大学学报(地球科学版),2015,45(4):1052-1059. Sun Youhong, Deng Sunhua, Wang Hongyan. Advances in the Exploitation Technologies and Researches of Oil Shale in the World:Report on 33rd Oil Shale Symposium in US[J]. Journal of Jilin University(Earth Science Edition), 2015,45(4):1052-1059.
[5] 牛继辉,陈殿义.国外油页岩的地下转化开采方法[J]. 吉林大学学报(地球科学版), 2006,36(6):1027-1030. Niu Jihui, Chen Dianyi. The Existing State About Underground Mining Methods of Oil Shale[J]. Journal of Jilin University(Earth Science Edition), 2006,36(6):1027-1030.
[6] 雷怀玉,王红岩,刘德勋,等.柳树河油页岩的热解特征及动力学[J]. 吉林大学学报(地球科学版), 2012,42(1):25-29. Lei Huaiyu, Wang Hongyan, Liu Dexun, et al. Pyrolysis Characteristics and Kinetics of Liushuhe Oil Shale[J]. Journal of Jilin University(Earth Science Edition), 2012,42(1):25-29.
[7] 迟姚玲,李术元,马玉华,等.龙口油页岩热解特性及动力学研究[J].中国石油大学学报(自然科学版), 2007,31(4):112-115. Chi Yaoling, Li Shuyuan, Ma Yuhua, et al. Study of Pyrolysis Characteristics and Kinetics of Longkou Oil Shale[J].Journal of China University of Petroleum (Edition of Natural Sciences), 2007,31(4):112-115.
[8] Adnan Al-Harahsheh, Omar Al-Ayed, Moh'd Al-Harahsheh, et al. Heating Rate Effect on Fractional Yield and Composition of Oil Retorted from Ellajjun Oil Shale[J]. Journal of Analytical and Applied Pyrolysis,2010,89:239-243.
[9] Jillian L Goldfarb, Anthony D'Amico, Christopher Culin, et al. Oxidation Kinetics of Oil Shale Semicokes:Reactivity as a Function of Pyrolysis Temperature and Shale Origin[J].Energy Fuels, 2013,27:666-672.
[10] Sun Youhong, Bai Fengtian, Lü Xiaoshu, et al.A Novel Energy-Efficient Pyrolysis Process:Self-Pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizationtal Fixed Bed[J]. Scientific Reports,2015,5:1-8.
[11] 王治朝, 米敬奎, 李贤庆, 等. 生烃模拟实验方法现状与存在问题[J]. 天然气地球化学, 2009, 20(4):592-597. Wang Zhichao, Mi Jingkui, Li Xianqing, et al. Current Sitution and Problems of Simulation Experiment Approach of Hydrocarbon Generation[J].Natural Gas Geoscience, 2009, 20(4):592-597.
[12] Lewan M D, Ruble T E. Comparison of Petroleum Generation Kinetics by Isothermal Hydrous and Nonisothermal Open-System Pyrolysis[J].Organic Geochemistry, 2002,33:1457-1475.
[13] 郑伦举,秦建中,何生,等.地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009,31(3):296-302,306. Zheng Lunju, Qin Jianzhong, He Sheng, et al. Preliminary Study of Formation Porosity Thermocompression Simulation Experiment of Hydrocarbon Generation and Expulsion[J]. Petroleum Geology & Experiment, 2009,31(3):296-302,306.
[14] 马中良, 郑伦举,李志明.烃源岩有限空间温压共控生排烃模拟实验研究[J].沉积学报,2012,30(5):955-963. Ma Zhongliang, Zheng Lunju, Li Zhiming. The Thermocompression Simulation Experiment of Source Rock Hydrocarbon Generation and Expulsion in Formation Porosity[J]. Acta Sedimentologica Sinica, 2012,30(5):955-963.
[15] 天然气的组成分析气相色谱法:GB/T13610-2003[S].北京:中国标准出版社, 2003. Analysis of Natural Gas by Gas Chromatography:GB/T13610-2003[S].Beijing:China Standardization Press,2003.
[16] 中华人民共和国石油天然气行业标准岩石中可溶有机物及原油族组分分析:SY/T5119-2008[S].北京:石油工业出版社, 2008. Petroleum and Natural Gas Industry Standards of Peoples's Republic of China Analysis Method for Fractions of Rock Extract and Crude Oil:SY/T5119-2008[S].Beijing:Petroleum Industry Press,2008.
[17] 曹华,龚晶晶,汪贵峰.超压的成因及其与油气成藏的关系[J].天然气地球科学,2006,17(3):422-425. Cao Hua, Gong Jingjing, Wang Guifeng. The Cause of Overpressure and Its Relationship with Reservoir Forming[J]. Natural Gas Geoscience,2006,17(3):422-425.
[18] 郝芳,邹华耀,方勇,等.超压环境有机质热演化和生烃作用机理[J].石油学报, 2006,27(5):9-18. Hao Fang, Zou Huayao, Fang Yong, et al. Kinetics of Organic Matter Maturation and Hydrocarbon Generation in Overpressure Environment[J]. Acta Petrolei Sinica, 2006,27(5):9-18.
[19] Lewan M D. Experiments on the Role of Water in Petroleum Formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17):3691-3723.
[20] Lewan M D, Stéphanie R. Role of Water in Hydro-carbon Generation from Type-I Kerogen in Mahogany Oil Shale of the Green River Formation[J]. Organic Geochemistry, 2011(42):31-41.
[21] 王兆云,程克明, 张柏生.加水热模拟实验气态产物特征及演化规律研究[J].石油勘探与开发, 1995,22(3):36-40. Wang Zhaoyun, Cheng Keming, Zhang Baisheng. The Study on the Characteristics and Evolution Regularity of Product of Gas Under Pyrolysis Simulation Experiments[J].Petroleum Exploration and Development,1995,22(3):36-40.
[22] 王晓锋,刘文汇, 徐永昌,等.水在有机质形成气态烃演化中作用的热模拟实验研究[J].自然科学进展, 2006,16(10):1275-1280. Wang Xiaofeng, Liu Wenhui, Xu Yongchang, et al. The Thermal Simulation Experiment of Water in the Formation of Organic Evolution to Gaseous Hydrocarbons[J]. Advances in Earth Science, 2006,16(10):1275-1280.
[23] 郑伦举, 何生, 秦建中, 等. 近临界特性的地层水及其对烃源岩生排烃过程的影响[J]. 地球科学:中国地质大学学报, 2011, 36(1):83-92. Zheng Lunju, He Sheng, Qin Jianzhong, et al. Formation Water of Near-Critical Properties and Its Effects on the Processes of Hydrocarbon Generation and Expulsion[J]. Earth Science:Journal of China University of Geosciences,2011,36(1):83-92.
[24] 马跃,李术元,王娟,等.水介质条件下油页岩热解机理研究[J].燃料化学学报,2011,39(12):881-886. Ma Yue, Li Shuyuan, Wang Juan, et al. Mechanism of Oil Shale Pyrosis Under High Pressure Water[J].Journal of Fuel Chemistry and Technology, 2011,39(12):881-886.
[25] Deng Sunhua, Wang Zhijun, Gu Qiang, et al. Ex-tracting Hydrocarbon from Huadian Oil Shale by Subcritical Water[J]. Fuel Processing Technology, 2011, 92(11):1062-1067.
[26] 王炫, 段培高, 戴立益. 超(近)临界水在有机化学反应中的应用[J]. 化学通报,2005, 68(5):1-6. Wang Xuan, Duan Peigao, Dai Liyi. Application of Supercritical/Near-Critical Water in Organic Chemical Reactions[J]. Chemistry, 2005, 68(5):1-6.
[27] Paul T Williams, Hafeez M Chishti. Influence of Re-sidence Time and Catalyst Regeneration on the Pyrolysis-Zeolite Catalysis of Oil Shale[J].Journal of Analytical and Applied Pyrolysis, 2001,60:187-188.
[28] Williams P T, Ahmad N. Influence of Process Con-ditions on the Pyrolysis of Pakistani Oil Shales[J]. Fuel, 1999, 78:653-662.
[29] 李术元, 林世静, 郭绍辉,等. 矿物质对干酪根热解生烃过程的影响[J]. 石油大学学报(自然科学版), 2002, 26(1):70-74. Li Shuyuan, Lin Shijing, Guo Shaohui, et al. Catalytic Effects of Minerals on Hydrocarbon Generation in Kerogen Degradation[J].Journal of the University of Petroleum(Edition of Natural Sciences), 2002, 26(1):70-74.
[30] 王娟,金强,马国政,等.高成熟阶段膏岩等盐类物质在烃源岩热解生烃过程中的催化作用[J]. 天然气地球科学,2009,20(1):26-31. Wang Juan, Jin Qiang, Ma Guozheng, et al. Catalytic Action of Sulphate Evaporates in Pyrolytic Gas Generation of Source Rocks[J].Natural Gas Geoscience, 2009,20(1):26-31.
[31] 赵桂瑜,刘洛夫,李术元.爱沙尼亚干酪根催化降解生烃过程及动力学研究[J].沉积学报, 2004,3(22):525-528. Zhao Guiyu, Liu Luofu, Li Shuyuan. Study on Characteristics and Kinetics of Catalytic Degradation from Estonis Kerogen[J].Acta Sedimentologica Sinica, 2004,3(22):525-528.
[1] Abakar Rabiea, Sun Youhong, Han Jing, Guo Mingyi. Catalytic Pyrolysis of Oil Shale in the Presence of Three Kinds of Inorganic Salt [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1043-1049.
[2] Liu Zhaojun, Sun Pingchang, Liu Rong, Meng Qingtao, Hu Fei. Research on Oil Shale Features and Metallogenic Differences in Dunhua-Mishan Fault Zone Basins [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1090-1099.
[3] Du Baiwei, Xie Shangke, Dong Yu, Peng Qinghua, Zheng Bo. Characteristics of Oil Shale of Oligocene Dingqinghu Formation and Its Geological Significance, Lunpola Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 671-680.
[4] Wen Zhiliang, Jiang Fuping, Zhong Changlin, Jiang Xuefei, Wang Guoqian, Qi Yan. Features and Origin of Super-Large Oil Shale Deposit in Southeast Uplift of the Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 681-691.
[5] Wang Feiyu, Feng Weiping, Guan Jing, He Zhiyong. Geochemical Assessment of Lacustrine Tight Oil and Application [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 388-397.
[6] Zhao Lin, Mo Huiting, Zheng Yi. Maintenance Mechanism of Freshwater Lens in Vadose Zone on Coastal Saline Areas [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 195-201.
[7] Sun Yonghong, Deng Sunhua, Wang Hongyan. Advances in the Exploitation Technologies and Researches of Oil Shale in the World:Report on 33rd Oil Shale Symposium in US [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1052-1059.
[8] Li Zhiming, Rui Xiaoqing, Li Maowen, Cao Tingting, Xu Ershe, Tao Guoliang, Jiang Qigui. Characteristics of Typical Hybrid Shale-Oil System in North America and Its Implications [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1060-1072.
[9] Zheng Yulong, Chen Chunrui, Wang Baichang, Wang Zhanguo, Liu Shengying, Wu Xiangmei. Resource Potential Evaluation of Oil Shale in North Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 683-690.
[10] Sun Yaoting, Xu Shouyu, Zhang Shiqi, Xu Haoqing, Guo Lili. Geochemical Characteristics and Genesis of the Oil Shale in Changle Sag,Shandong Province [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 736-742.
[11] Xie Shangke,Du Baiwei,Wang Jian,Peng Qinghua,Zheng Bo. Characteristics and Distribution Rule of Oil Shale in Lunpola Basin, Tibet [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 1760-1767.
[12] Wu Hongzhu,Huang Zhilong,Yang Baisong,Liu Bo,Yan Yukui,Sang Tingyi,Wen Chuanjiang. Geochemical Characteristics and Hydrocarbon-Generating Mechanism of Low-Mature Shale Oil in Malang Sag [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 56-66.
[13] Su Shengrui, Li Peng, Wang Qi, Su Weiwei, Zhang Ying. Physical Simulation Experimental Research on the Deformation Law and Mechanical Mechanism of Imbricated Thrust Fault:with Longmenshan Fault as an Example [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 249-258.
[14] LIU Zhao-jun, MENG Qing-tao, JIA Jian-liang, SUN Ping-chang, LIU Rong, HU Xiao-feng. Metallogenic Regularity of Oil Shale in Continental Basin:Case Study in the Meso-Cenozoic Basins of Northeast China [J]. J4, 2012, 42(5): 1286-1297.
[15] SUN Ping-chang, LIU Zhao-jun, LI Bao-yi, LIU Rong, MENG Qing-tao, ZHOU Ren-jie, YAO Shu-qing, XU Yin-bo. Geochemical Characteristics and Their Geological Implications of Oil Shale Member of Huadian Formation, Huadian Basin [J]. J4, 2012, 42(4): 948-960.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!