Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (4): 1052-1059.doi: 10.13278/j.cnki.jjuese.201504109

Previous Articles     Next Articles

Advances in the Exploitation Technologies and Researches of Oil Shale in the World:Report on 33rd Oil Shale Symposium in US

Sun Yonghong1, Deng Sunhua1, Wang Hongyan2   

  1. 1. College of Construction Engineering, Jilin University, Changchun 130026, China;
    2. College of Chemistry, Jilin University, Changchun 130012, China
  • Received:2014-02-01 Published:2015-07-26

Abstract:

The 33rd Oil Shale Symposium sponsored by Colorado School of Mines was held in 14-16 Oct, 2013. The emphasis of the symposium was on the following: geological surveys, chemical analyses, surface retorting technologies, in-situ technologies, international projects and development, and risk assessments of oil shale. A summary is given of the most important facts and views presented in the symposium. It is indicated that the development and utilization of oil shale in the world is evolving toward in-situ, fast, economical and environment friendly direction. Many techniques and ideas presented in the symposium, such as the spectroscopic analysis, boiling oil in situ conversion process and its pilot test, the design, and development of the new oil shale, are worthy of our learning and reference.

Key words: oil shale, international symposium, geological survey, chemical analysis, retorting technology, in-situ, oil shale project

CLC Number: 

  • P618.12

[1] Doumit P, Kerr S, Schou L. Stratigraphic and Lithologic Consistency and Variability of the Mahogany Zone Oil Shale in the Eastern Uintah Basin, Utah//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 25.

[2] Boak J, Poole S, Milkeviciene KT, et al. Geochemistry of the Green River Formation, Piceance Creek Basin, Colorado//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 30.

[3] Goren O. The Associations of Various Trace Elements to the Rock Components of Carbonate Oil Shales//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 25.

[4] Birdwell J, Washburn K, Johnson R,et al. Rapid Screening of Oil Shale Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 33.

[5] 黄红英,尹齐和. 傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展[J]. 中山大学研究生学刊:自然科学、医学版, 2011, 32(1): 20-31. Huang Hongying, Yin Qihe. Fundamentals and Application Advances in Attenuated Total Internal Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)[J]. Journal of the Graduates, Sun Yat-Sen University: Natural Sciences, Medicine, 2011, 32(1): 20-31.

[6] Rath M. Utilizing NIR Technology to Improve Oil Shale Processing//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 34.

[7] Fletcher T H, Gillis R, Adams J, et al. Characterization of Pyrolysis Products from a Utah Green River Oil Shale Sample by 13C NMR, GC/MS, and FT IR//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 31.

[8] Hutton, Adrian C, Bharati, et al. Chemical and Petrographic Classification of Kerogen/Macerals[J]. Energy Fuels, 1994, 8 (6): 1478-1488.

[9] Vandenbrouckea M C. Largeau, Kerogen Origin, Evolution and Structure[J]. Organic Geochemistry, 2007, 38(5): 719-833.

[10] Geng Cengceng, Li Shuyuan. Comparison of Nitrogen Compounds in Shale Oil and Coal Tar by Gas Chromatography-Mass Spectrometry and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 34.

[11] Pomerantz D. Modern Methods of Characterizing the Chemical Composition of Bitumen and Kerogen: New Possibilities for Kinetic Models//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 29-30.

[12] Pugmire R, Fletcher T, Hillier J, et al. Detailed Characterization and Pyrolysis of Shale, Kerogen, Kerogen Chars, Bitumen, and Light Gases from a Green River Oil Shale Core//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 30-31.

[13] Siskin M, Scouten C G, Rose K D, et al. Detailed Structural Characterization of the Organic Material in Rundle Ramsay Crossing and Green River Oil Shales[J]. Composition, Geochemistry and Conversion of Oil Shales, NATO ASI Series, 1995, 455: 143-158.

[14] Orendt A M, Pimienta I S O, Badu S R, et al. Three-Dimensional Structure of the Siskin Green River Oil Shale Kerogen Model: A Comparison Between Calculated and Observed Properties[J]. Energy & Fuels, 2013, 27(2): 702-710.

[15] 钱家麟, 王剑秋, 李术元. 世界油页岩资源利用和发展趋势[J]. 吉林大学学报:地球科学版, 2006, 36(6): 877-887. Qian Jialin, Wang Jianqiu, Li Shuyuan. World Oil Shale Utilization and Its Future[J]. Journal of Jilin University: Earth Science Edition, 2006, 36(6): 877-887.

[16] Geng Cengceng,Li Shuyuan,Qian Jialin. New Development and Utilization of Chinese Oil Shale//33th Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013:14.

[17] Aarna I. Status Update of Enefit280 Shale Oil Production Plant in Estonia//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 43.

[18] Sherritt R, Taavi Lauringson, Florian Philipps. Oil Shale Attrition in a Circulating Fluidised Bed Combustor//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 27.

[19] Garnier O, Francoise Behar, Bernard Corre, et al. Prediction of EcoshaleTM Production Profile Using CFD and Kinetic Models//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 28.

[20] Longo P. Paraho II: New Bench Retort Experimental Unit//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 38.

[21] Wani A, Schroeder T, Meyer C, et al. Low Water Use Technologies: Improvements to Shell's Water Balance//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 39.

[22] Burnham A. Oil Shale Rock Mechanics: How to Deal with Huge Changes with Grade and Temperature?//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 35.

[23] Hradisky M, Smith P, Burnham A. High Performance Computing Simulations of In-Situ Thermal Treatment of Oil Shale//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 27.

[24] Li Hangyu, Vink J, Alpak F. A Multiscale Modeling Method for the In-Situ Conversion Process//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 27.

[25] Wang Zhijun, Deng Sunhua, Wang Hongyan. Sub-Critical Water Extraction of Huadian Oil Shale and Pyrolysate Properties//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 46.

[26] Curtis D, Forsberg C. Nuclear Heat and Power for In-Situ Shale Oil Production and Variable Electricity//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 38.

[27] Aho G, France B. Enefit's Utah Oil Shale Bulk Sample Project//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 35-36.

[28] Boak J. Where do We Stand? A Global View of the Status and Future of Shale Oil Production from Oil Shale//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines,2013: 23.

[29] Yildirim E. Canada's Oil Shales: The Time is Now//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 40.

[30] Al-Ramini H. A Mathematical Modeling Approach for Assessing the Energy Crisis in Jordan//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 43-44.

[31] Yusupkhodjaev A, Salikhov R. Oil Shale Development in Uzbekistan: The Sangruntau Project//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 39-40.

[32] Cook T. Oil Shale Development Projections: When Will Technology and Economics Convert This Resource into Reserves?//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 39.

[33] Argyle D, Arbus M. Challenges and Opportunities for Potential Oil Shale Operators//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 23.

[34] Kallemets K. Optimal Resource Revenue Model for a Developed Country//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 28.

[35] Jia J. Challenges and Risk Assessment for International Oil Shale Project//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 29.

[36] Leverette M, Status and Plans for the U S Department of Interior Program for Development of Oil Shale and Oil Sands//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 22.

[37] Puura E.Environmental Impacts of Estonian Oil Shale Industry: Lessons Learned During 97 Years of Utilization//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 42.

[38] Posey H, Finley J, Vuelvas F. Shell's Environmental Baseline Surveys in Piceance Basin, Colorado//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 41-42.

[39] Anisimov L. Spontaneous Fires in Oil Shale Depo-sits: From Hazards to Resources//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 41.

[40] Lojewski A, Odut S. Oil Shale and Fuel Oil Chemistry Related to Combustion and Fouling Issues, with Reference to Operation of the ATP Plant at Fushun, China//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 38.

[1] Abakar Rabiea, Sun Youhong, Han Jing, Guo Mingyi. Catalytic Pyrolysis of Oil Shale in the Presence of Three Kinds of Inorganic Salt [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1043-1049.
[2] Ma Zhongliang, Zheng Lunju, Zhao Zhongxi. Influence and Its Revelation of Oil Shale In-Situ Mining Simulation in Different Boundary Conditions [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 431-441.
[3] Liu Zhaojun, Sun Pingchang, Liu Rong, Meng Qingtao, Hu Fei. Research on Oil Shale Features and Metallogenic Differences in Dunhua-Mishan Fault Zone Basins [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1090-1099.
[4] Du Baiwei, Xie Shangke, Dong Yu, Peng Qinghua, Zheng Bo. Characteristics of Oil Shale of Oligocene Dingqinghu Formation and Its Geological Significance, Lunpola Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 671-680.
[5] Wen Zhiliang, Jiang Fuping, Zhong Changlin, Jiang Xuefei, Wang Guoqian, Qi Yan. Features and Origin of Super-Large Oil Shale Deposit in Southeast Uplift of the Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 681-691.
[6] Zheng Yulong, Chen Chunrui, Wang Baichang, Wang Zhanguo, Liu Shengying, Wu Xiangmei. Resource Potential Evaluation of Oil Shale in North Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 683-690.
[7] Sun Yaoting, Xu Shouyu, Zhang Shiqi, Xu Haoqing, Guo Lili. Geochemical Characteristics and Genesis of the Oil Shale in Changle Sag,Shandong Province [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 736-742.
[8] Jiang Guanghui, Guo Fang, Yu Shi. Chemographs of Karst Water System and Its New Application in Hydrogeological Survey [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 899-907.
[9] Xie Shangke,Du Baiwei,Wang Jian,Peng Qinghua,Zheng Bo. Characteristics and Distribution Rule of Oil Shale in Lunpola Basin, Tibet [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 1760-1767.
[10] Liu Chunlei, Wang Guiling, Wang Wanli, Lin Wenjing. Analysis of  Soil Thermal Properties with In-Situ Thermal Response Test Method [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1602-1608.
[11] Li Jiankang. In Situ Observation of Separation Mechanism of Ore-Forming Fluid from Granitic Magma in Granite-Related Deposit [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 518-526.
[12] LIU Zhao-jun, MENG Qing-tao, JIA Jian-liang, SUN Ping-chang, LIU Rong, HU Xiao-feng. Metallogenic Regularity of Oil Shale in Continental Basin:Case Study in the Meso-Cenozoic Basins of Northeast China [J]. J4, 2012, 42(5): 1286-1297.
[13] SUN Ping-chang, LIU Zhao-jun, LI Bao-yi, LIU Rong, MENG Qing-tao, ZHOU Ren-jie, YAO Shu-qing, XU Yin-bo. Geochemical Characteristics and Their Geological Implications of Oil Shale Member of Huadian Formation, Huadian Basin [J]. J4, 2012, 42(4): 948-960.
[14] LIU Rong, LIU Zhao-jun, DU Jiang-feng, LIU Dong-qing, YANG Xiao-hong, XU Yin-bo. New Research on Oil Shale Origin of Eocene Dalianhe Formation in Yilan Basin [J]. J4, 2012, 42(4): 941-947.
[15] JI Gui-juan, YANG Chun-ming, GAN Shu-cai, WU Xiao-min, WANG Zhong-ge. Prouduction of Portland Cement with Oil Shale Ash [J]. J4, 2012, 42(4): 1173-1178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!